Probability and Statistics 2

for Computer Science

“Unsupervised learning is
arguably more typical of human
and animal learning...”--- Kelvin
Murphy, former professor at UBC

Credit: wikipedia
]
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Linear Regression (lI)

Nearest Neighbor Regression



The curse of dimensionality
Multivariate normal distribution
Unsupervised learning

Clustering (I)






First let’s take a look at a 3D object

Is there more fruit than peel?

Credit: Prof. David Varodayan



First take a look at a 3D object

Is there more fruit or more peel?

Total Volume: 23

Vol. of fruit: (2-2¢)3

Vol. of peel: 23-(2-2¢)3
Fraction of peel: 1-(1-¢)3

If €= 0.05 fraction of peel = 0.143

Credit: Prof. David Varodayan



What if we have a d-dimensional orange?

Is there always more fruit?

A. YES
B. NO



In arbitrary d-dimension

Total amount of orange
Amount of fruity part

Fraction of orange that is peel



The curse of dimensions

If a dataset is uniformly distributed in a high-
dimensional cube (or other shape), majority of data
is far from the origin.

The above can be roughly proved by calculating
the expected distance from the origin



The Expected distance from the origin in

d-dimensional cube

i—1 * cube Assuming the independence of each x;
P(x) = P(xq1)P(x2)...P(xy4)

/"'OO The general law of continuous probability density



A lot of data is far from the origin.

On average, data points are d/3 away from
the origin (using square of distance)

d 1
Blxz'x] = Z/ v? P(z;)dx;
i=1 v 1

d 1
1
— E —/ .Clj'?diljz'
i—1 2 )1

W &



What do high-dimensional cubes look

like?



What do high-dimensional cubes look

like?

Petrie polygon Orthographic projections

L 4
o]

Line segment

10-cube

11-cube

13-cube 14-cube 15-cube Cre d it:

Wiki



What does a convex object K in high

dimensions look like?

The spikes are

outliers in high

dimension Credit: G. Pfander editor,
“Sampling theory, a
Renaissance”

A general convex set

With this séaling, most of the volume of K is located around the Euclidean sphere
of radius ,/n. Indeed, taking traces on both sides of the second equation in (1.2), we
obtain

E[X|3 = n.

Therefore, by Markov’s inequality, at least 90% of the volume of K is contained
in a Euclidean ball of size O(4/n). Much more powerful concentration results are
known—the bulk of K lies very near the sphere of radius /n and the outliers have
exponentially small volume. This is the content of the two major results in high-
dimensional convex geometry, which we summarize in the following theorem.



Distance between points grows with

increasing dimensions

Eld(u,v)’] = El(u —v)" (u - v),
= Elu'u] + Elv'v] — 2E[u’ v]



High dimensional histogram of a data set

is unhelpful

Most bins will be empty
Some bins will have single data

Very few will have more than one data point



Dealing with high dimensional data

Collect as much data as possible
Cluster data into blobs/cluster

Fit each blob with simple probability model



Multivariate normal distribution

Extension of the normal distribution to
multiple dimensions

Bivariate normal distribution looks like this:

oy = 1 gt () 2 () + ()]
| 2noxcy\/1—p?

-I< p<1




Multivariate normal probability densitiy

A multivariate normal random vector X of
dimension d has this pdf:

where
1 = Elzx]is d-dimensional mean vector

Y= El(x—p)(x—p)']isthe d x d positive
definite covariance matrix



Multivariate MLE

Given a d-dimensional data set ({x}) we can fit a
multivariate normal model using MLE

V(e LI C)

P(x|0) =



Unsupervised learning

Unsupervised learning means knowledge discovery
from the feature vectors without labels.

Unsupervised learning may include:
% Discovering latent factors
Discovering clusters

Discovering graph structure

* Kk Kk

Matrix completion



Q. Is this true?

Principal Component Analysis is an unsupervised
learning method.

A. TRUE
B. FALSE



Dimension Reduction is unsupervised

learninc

For example in Principal Component Analysis, no
labels are assumed about the data.

PCA discovers the latent factors--- the important
eigenvectors of the covariance matrix



The family of unsupervised learning
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Clustering as an unsupervised learning

method

Clustering identifies specific structure called clusters.

In clustering data is not labeled. By identifying
clusters, the method assigns cluster membership
labels to data.

A cluster is formed so that

% Items within a cluster are “close” to each other

% Items in different clusters are “far” from each other
% Distance metric is important in clustering



Types of clustering method

By input type:

% Similarity based clustering: input is N x N similarity/
distance matrix

% Feature based clustering: input is N x D feature matrix

By output type:
% Hierarchical clustering
Top-down (divisive)
Bottom-up (agglomerative)
% Flat clustering:
Mixture models, K-means clustering, Spectral clustering...



Hierarchical Clustering (l)

Divisive clustering

% Treat the whole dataset as a single cluster

% Then split the data set recursively until you get a
satisfactory clustering



Hierarchical Clustering (ll)

Agglomerative clustering
¥ Treat each data item as its own cluster

% Then merge clusters until you get a satisfactory
clustering

* A “dendrogram” is created 4
A ‘ 1 cluster

2 clusters

distance

3
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Hierarchical Clustering example

*  Agglomerative
clustering of matrix

of gene-tissue pairs ﬁﬁﬁmﬁmﬁfﬁﬁm

of human samples.

% Columns are
tissues; rows are

enes E ==
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# Clustering is done
for both directions




K-means clustering

% Pick a value k as the

number of clusters o © o
fo &
# Select k random -
ap
cluster centers
* Iterate until (1) (2)

convergence:

% Assign each data to
the nearest center

% Update the center
within the cluster

@,
?.w/y: 2

(3) Source:wikipedia (4)



Q. What are the values of c1 and c2?

Given a dataset {0,2,4,6,24,26}, initialize the k -
means clustering algorithm with 2 cluster centers
cl=3 and c2 = 4. What are the values of c1 and c2
after one iteration of k-means?



Q. What are the values of c1 and c2?

Given a dataset {0,2,4,6,24,26}, initialize the k -
means clustering algorithm with 2 cluster centers
cl=3 and c2 = 4. What are the values of c1 and c2
after two iterations of k-means?



What does k-means do mathematically?

It’s an minimization of a cost function

®(9,¢c) = Z 0ii[(; — ;)" (x:i — ¢)]

N k
5 1 if x; € cluster j
— S: S: 0ij ||l: — ¢;l|” i = {0 otherwise
i

Cost is defined by the sum of squared distances of each
data point from its cluster center



K-means clustering example: Iris

True labels 2 clusters
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K-means clustering example: Iris

True labels 3 clusters
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K-means clustering example: Iris

True labels 4 clusters
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How to choose the value of k?

Sometimes we have the knowledge from the data set.
Sometimes we have some other natural way to choose k.

Otherwise given the cost function, we may perform
clustering for many k values and choose k from the knee of
the cost function empirically.



Choose k from the cost function curve

81
o

500
1

Which is best?
Still depends on
the application

400
!

Usually we want
fewer clusters.

Within groups sum of squares
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Number of Clusters



Some variants of k-means clustering

Soft assignment allows some data items to belong to
multiple clusters with weights associated with each

cluster

Hierarchical k-means speeds up clustering for very large
datasets

K-medioids allows clustering of data that cannot be
averaged



Q. What is different between a

hierarchical clustering (hc) and k-means?

A. HC produces dendrogram while k-means results in
only flat clusters.

B. HC doesn’t need to choose number of clusters
while k-means needs that step.

C. HC has higher order time complexity than k-means

D. All the above.



K-means clustering example: Portugal

consumers

The dataset consists of the annual grocery spending of
440 customers

Each customer's spending is recorded in 6 features:

% fresh food, milk, grocery, frozen, detergents/paper,
delicatessen

Each customer is labeled by: 6 labels in total
% Channel (Channel 1 & 2) (Horeca 298, Retail 142)
% Region (Region 1, 2 &3) (Lisbon 77, Oporto 47, Other 316)



Lisbon, Portugal




Oporto, Portugal




Visualization of the data

Visualize the data
with scatter plots

We do see that
some features are

correlated.

But overall we do
not see significant
structure or groups
in the data.
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Do kmeans and choose k through the cost

function

It’s good to pick
a k around the
knee:

| choose 6 for it
matches the
number of labels

Within groups sum of squares

1.0e+11 1.5e+11

5.0e+10

Number of Clusters



Visualization of the data (PCA)

PCA_sells
PCA does show .
some separation. .
Colors are the :-
clusters -
Data points show 5 s
large range of )
dynamics! & b
: T
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Do log transform of the data
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PCA after log transformation: Clusters

PCA_sells

Colors show the
clusters
identified by k-
means
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PCA after log transformation

PCA_sells

Colors show the
Channel-region .- _
labels -
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tell us? g I R
. . o



PCA after log transformation

PCA_sells

Colors show the
Channel-region ‘-

labels S
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Read Chapter 11 of the textbook
Week 14 Module

Next time: Clustering (ll) & intro. Of
Markov Chain



Additional References

Robert V. Hogg, Elliot A. Tanis and Dale L.
Zimmerman. “Probability and Statistical
Inference”

Kelvin Murphy, “Machine learning, A
Probabilistic perspective”



See you next time




