

"The statement that "The average US family has 2.6 children" invites mockery" – Prof. Forsyth reminds us about critical thinking

Credit: wikipedia

Last lecture

- ** Welcome/Orientation
- ** Big picture of the contents
- ** Lecture 1 Data Visualization & Summary (I)
- **** Orientation quiz due today**

Warm up question:

- ** What kind of data is a letter grade?
- ** What do you ask for usually about the stats of an exam with numerical scores?
 - (1) A: Categorical (2) write

 [3]: ordinal in chat
 - C: Continous

Objectives

Grasp Summary Statistics

Mean Median Medi

Summarizing 1D continuous data

For a data set $\{x\}$ or annotated as $\{x_i\}$, we summarize with:

****** Location Parameters

```
Mean (M) Median, Mode
```

Scale parameters

```
Standard Interquartile deviation (5), range Variance (5<sup>2</sup>)
```

Summarizing 1D continuous data

* Mean

$$mean(\{x_i\}) = \frac{1}{N} \sum_{i=1}^{N} x_i$$

It's the centroid of the data geometrically, by identifying the data set at that point, you find the center of balance.

$$\{x_i\} = 1, 2, 3, 4, 5, 6, 7, 12$$

| Mean($\{x_i\}\} = 5$

Properties of the mean

Scaling data scales the mean

$$mean(\{k \times x_i\}) = k \cdot mean(\{x_i\}) + c$$

** Translating the data translates the mean

$$mean(\{x_i + c\}) = mean(\{x_i\}) + c$$

Less obvious properties of the mean

** The signed distances from the mean

sum to 0
$$\sum_{i=1}^{N} (x_i - mean(\{x_i\})) = 0$$

** The mean minimizes the sum of the squared distance from any real value

$$\underset{\mu}{argmin} \sum_{i=1}^{N} (x_i - \mu)^2 = mean(\{x_i\})$$

Proof: $\sum_{i=1}^{N} (x_i - mean(ix_i)) = 0$

LHS =
$$\sum_{i=1}^{N} z_i - \sum_{i=1}^{N} mean(iz_i)$$

= $\sum_{i=1}^{N} z_i - N$. mean(ixi3)
= $\sum_{i=1}^{N} z_i - \sum_{i=1}^{N} \sum_{i=1}^{N} x_i$
= $\sum_{i=1}^{N} z_i - \sum_{i=1}^{N} z_i = 0$

Proof: Argmin $(\sum_{i=1}^{N} (x_i - M)^2) = mean(\{x_i'\})$

Argument 11 that minimizes the function that follows

LHS = \hat{u} -> the special u that n:n:m:zes $f(u) = \sum_{i=1}^{N} (x_i - u)^2$

To find \hat{u} . Set $\frac{df(u)}{df(u)} = 0$ & Solve it

One way is to use the Chain rule

 $f(M) = \sum_{i=1}^{n} h(M) = \sum_{i=1}^{n} 3^{n}(M) \quad 3^{n} = x_{i-1}M$ $\frac{df}{dx} = \frac{d}{dx} = \sum_{i=1}^{n} \frac{df}{dx} = \sum_{i=1}^{$

Proof: Argmin
$$(\sum_{i=1}^{N} (x_i - M)^2) = mean(ixi)$$

$$\frac{df(M)}{dM} = \sum_{i=1}^{M} \frac{dg}{dM} = \sum_{i=1}^{M} 2g \cdot (-1) = 0$$

$$h = g^{2}$$

$$g = x(-M)$$

$$\Rightarrow \sum_{i=1}^{M} (x(-M) = 0)$$

$$\sum_{i=1}^{M} x(-N \cdot M) = 0$$

$$\sum_{i=1}^{M} x(-N \cdot M) = 0$$

$$\hat{x} = \frac{\sum_{i \in \mathcal{N}} x_i}{N}$$

$$= mean(1xi)$$

Q1:

****** What is the answer for

 $mean(\{mean(\{x_i\})\})?$

A. $mean(\{x_i\})$ B. unsure C. 0

Standard Deviation (σ)

* The standard deviation

$$std(\{x_i\}) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - mean(\{x_i\}))^2}$$

$$= \sqrt{mean(\{(x_i - mean(\{x_i\}))^2\})}$$

How much the data spreads

out wrt mean

$$Std = \sqrt{4} \sum_{i=1}^{4} d_i^2$$

Q2. Can a standard deviation of a dataset be -1?

A. YES B. NO

Properties of the standard deviation

Scaling data scales the standard deviation

$$std(\{k \cdot x_i\}) = |k| \cdot std(\{x_i\})$$

** Translating the data does NOT change the standard deviation

$$std(\{x_i + c\}) = std(\{x_i\})$$

Standard deviation: Chebyshev's inequality (1st look)

** At most $\frac{N}{k^2}$ items are k standard deviations (σ) away from the mean

** Rough justification: Assume mean =0

$$std = \sqrt{\frac{1}{N}[(N - \frac{N}{k})0^2 + \frac{N}{k^2}(k\sigma)^2]} = \sigma$$

Variance (σ^2)

** Variance = (standard deviation)²

$$var(\{x_i\}) = \frac{1}{N} \sum_{i=1}^{N} (x_i - mean(\{x_i\}))^2$$

Scaling and translating similar to standard

deviation
$$var(\{k \cdot x_i\}) = k^2 \cdot var(\{x_i\})$$

 $var(\{x_i + c\}) = var(\{x_i\})$

Q3: Standard deviation

** What is the value of
std({mean({x_i})}) ?
A.0 B. 1 C. unsure

Standard Coordinates/normalized data

** The mean tells where the data set is and the standard deviation tells how spread out it is. If we are interested only in comparing the shape, we could

define:
$$\widehat{x_i} = \frac{x_i - mean(\{x_i\})}{std(\{x_i\})}$$

** We say $\{\widehat{x_i}\}$ is in standard coordinates

Q4: Mean of standard coordinates

mean($\{\widehat{x_i}\}$) is:

A. 1 B.0 C. unsure

$$\widehat{x_i} = \frac{x_i - mean(\{x_i\})}{std(\{x_i\})}$$

Q5: Standard deviation (σ) of standard coordinates

Std($\{\widehat{x_i}\}$) is:

$$\widehat{x_i} = \frac{x_i - mean(\{x_i\})}{std(\{x_i\})}$$

Q6: Variance of standard coordinates

Variance of $\{\widehat{x_i}\}$ is:

A.1 B.0 C. unsure

$$\widehat{x_i} = \frac{x_i - mean(\{x_i\})}{std(\{x_i\})}$$

Q7: Estimate the range of data in standard coordinates

Estimate as close as possible, 90% data is within:

$$\widehat{x}_i = \frac{x_i - mean(\{x_i\})}{std(\{x_i\})}$$

$$\frac{N}{K^2} = \frac{1}{K^2} \leq 10\%$$

$$= 90\%$$

$$v = K6$$

$$K6 = K$$

$$(6.1)$$

Standard Coordinates/normalized data to μ =0, σ =1, σ ²=1

- Data in standard coordinates always has mean = 0; standard deviation =1; variance = 1.
- Such data is unit-less, plots based on this sometimes are more comparable
- ** We see such normalization very often in statistics

Median

- ** We first sort the data set $\{x_i\}$
- ** Then if the number of items N is odd median = middle item's value if the number of items N is even median = mean of middle 2 items' values

Properties of Median

Scaling data scales the median

$$median(\{k \cdot x_i\}) = k \cdot median(\{x_i\})$$

** Translating data translates the median

$$median(\{x_i + c\}) = median(\{x_i\}) + c$$

Percentile

- ** kth percentile is the value relative to which k% of the data items have smaller or equal numbers
- * Median is roughly the 50th percentile

$$11, 2, 3, 4, 5, 6, 7, 12$$

75+h percentile = ? 6 $\times 0.75$

Interquartile range

- # iqr = (75th percentile) (25th percentile)>
- * Scaling data scales the interquartile range

$$iqr(\{k \cdot x_i\}) = |k| \cdot iqr(\{x_i\})$$

** Translating data does **NOT** change the interquartile range

$$iqr(\{x_i + c\}) = iqr(\{x_i\})$$

Box plots

- ** Boxplots
 - ** Simpler than histogram
 - ****** Good for outliers
 - ** Easier to use for comparison

Vehicle death by region

Data from https://www2.stetson.edu/~jrasp/data.htm

Boxplots details, outliers

How to Outlier define > 1.5 iqr Whisker outliers? (the default) Box Interquartile Range (iqr) Mediar < 1.5 iqr

Q. TRUE or FALSE

mean is more sensitive to outliers than median

Q. TRUE or FALSE

interquartile range is more sensitive to outliers than std.

Sensitivity of summary statistics to outliers

- ** mean and standard deviation are very sensitive to outliers
- ** median and interquartile range are not sensitive to outliers

Modes

- * Modes are peaks in a histogram
- # If there are more than 1 mode, we should be curious as to why

Multiple modes

** We have seen the "iris" data which looks to have several peaks

Data: "iris" in R

Example Bi-modes distribution

* Modes may indicate multiple populations

Piagnerelli, JCP 2007

healthy humans

Tails and Skews

Symmetric Histogram

Credit: Prof.Forsyth

Q. How is this skewed?

Median = 47

mean = 46
mean < med:an => left

Assignments

- * HW1 due Thurs. Feb. 4.
- ** Quiz 1 (open 4:30pm today until Mon. next week)
- ** Reading upto Chapter 2.1
- ** Next time: the quantitative part of correlation coefficient

Additional References

- ** Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

