

"Probabilistic analysis is mathematical, but intuition dominates and guides the math" – Prof. Dimitri Bertsekas

Credit: wikipedia

Homework (I)

- ** Due 2/4 today at 11:59pm
- ** There is one optional problem with extra 5 points. (Won't be in exams)

Last time

Correlation Coeffient (corr).

Prediction using corr.

Warm up

A game of chance.

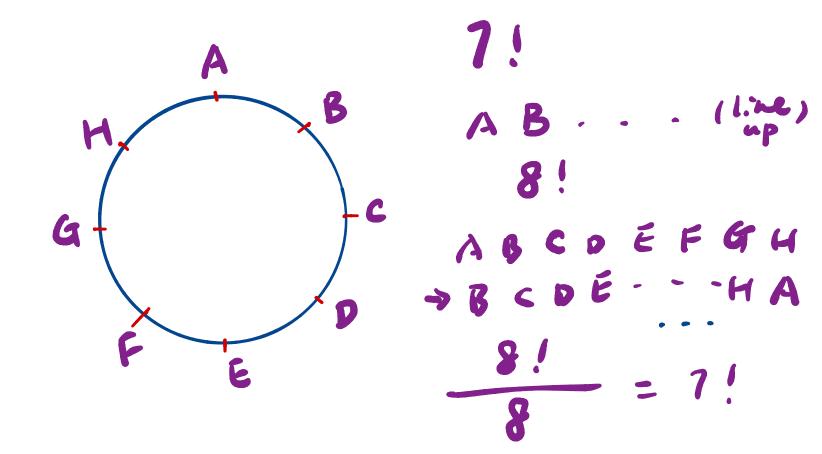
Warm up (II)

Fill the blanks:

"I am an avid vegetarian and I enjoy eating all day long, people admire my appetite and like to watch me eat." I am a PAND. How many ways are there to rearrange these 5 letters? _____. If you draw 2 letters from them, how many outcomes (order matters) are there that are without "a"?

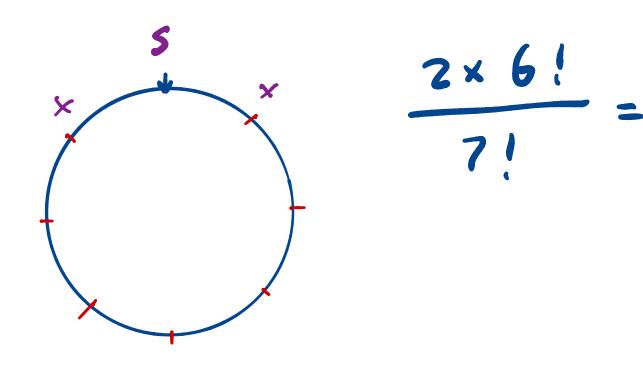
How many arrangements?

8 people to sit by a round table.



How much chance?

One student and the best friend (B) get to 5:t together.



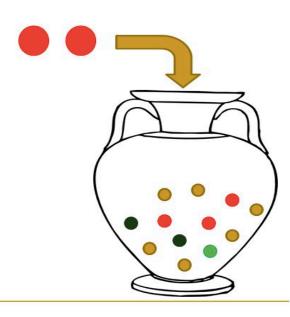
Objectives

- ** Probability a first look
 - ** Outcome and Sample Space
 - *** Event**
 - ** Probability
 - Probability axioms & Properties
 - * Calculating probability

Outcome

** An outcome A is a possible result of a random repeatable experiment

Random: uncertain, Nondeter-ministic, ...

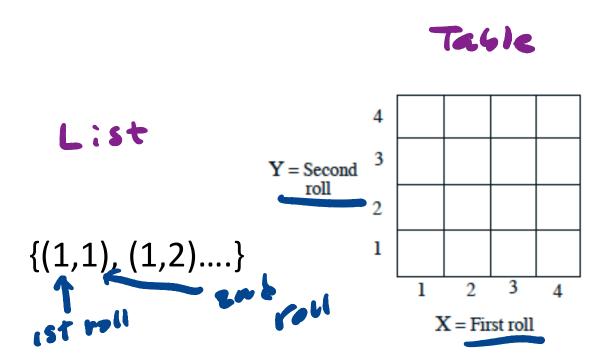


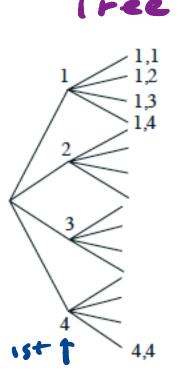
Sample space

- ** The Sample Space, Ω , is the set of all possible outcomes associated with the experiment
- **** Discrete or Continuous**

Sample Space example (1)

- ****** Experiment: we roll a 4sided-die twice
- ** Discrete Sample space:

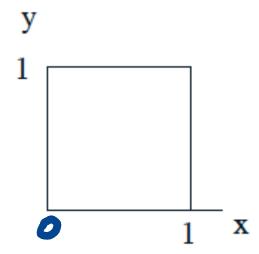




Sample Space example (2)

- ** Experiment: Romeo and Juliet's date
- **** Continuous** Sample space:

$$\Omega = \{(x, y) \mid 0 \le x, y \le 1\}$$



Sample Space depends on experiment (3)

- ** Different coin tosses

- ** Toss a fair coin twice | HH, HT, TH, TT]
- ** Toss until a head appears (**)

 H, TH, TTH...

Sample Space depends on experiment (4)

** Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock with replacement?

** Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock without replacement? Q_{1}

** Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock with replacement? What is the number of unique outcomes in the sample space?

 Q_{\cdot}

** Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock without replacement? What is the number of unique outcomes in the sample space?

A. 5 B. 6 C. 9
$$3 \times 2 = 6$$

Sample Space in real life

- ** Possible outrages of a power network
- ** Possible mutations in a gene
- ****** A bus' arriving time

Event

- ** An event **E** is a subset of the sample space Ω
- ** So an event is a set of outcomes that is a subset of Ω , ie.
 - * Zero outcome
 - ***** One outcome
 - ****** Several outcomes
 - ***** All outcomes

$$P$$
 A
 A
 A
 A
 B
 C
 $E = IZ$

The same experiment may have different events

- ** When two coins are tossed
 - ** Both coins come up the same? [] TT]
 - ** At least one head comes up?

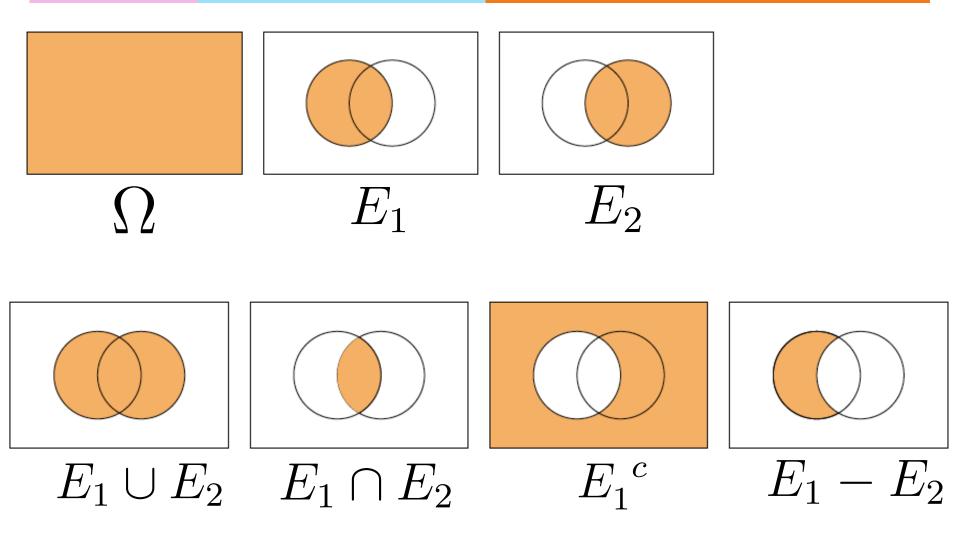
Some experiment may never end

** Experiment: Tossing a coin until a head appears

E: Coin is tossed at least 3 times
This event includes infinite # of outcomes

E: /TTH, TTTH, . . -]

Venn Diagrams of events as sets



Combining events

** Say we roll a six-sided die. Let

$$E_1=\{1,2,5\} \ and \ E_2=\{2,4,6\}$$
 ** What is $E_1\cup E_2=\{1,2,5\}$ ** What is $E_1\cap E_1=\{1,2,5\}$ ** What is $E_1\cap E_2=\{1,2,5\}$ ** What is $E_1\cap E_1=\{1,2,5\}$ *

Frequency Interpretation of Probability

Given an experiment with an outcome **A**, we can calculate the probability of A by repeating the experiment over and over

repeating the experiment over and over
$$P(A) = \lim_{N \to \infty} \frac{number\ of\ time\ A\ occurs}{N}$$
 \divideontimes So,

$$\sum_{A_i \in \Omega} 0 \le P(A) \le 1$$

$$\sum_{A_i \in \Omega} P(A_i) = 1$$

Axiomatic Definition of Probability

- ** A probability function is any function P that maps sets to real number and satisfies the following three axioms:
 - 1) Probability of any event E is non-negative

$$P(E) \ge 0$$

2) Every experiment has an outcome

$$P(\Omega) = 1$$

Axiomatic Definition of Probability

Muruelly exclusive

3) The probability of disjoint events is additive

$$P(E_1 \cup E_2 \cup ... \cup E_N) = \sum_{i=1}^{n} P(E_i)$$

$$\inf_{E_1 \in \mathcal{E}_2} E_i \cap E_j = \emptyset \text{ for all } i \neq j$$

$$E_1 = E_1 \cup E_2$$

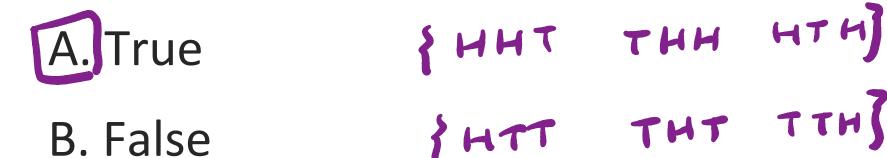
$$E_3 = E_1 \cup E_2$$

$$E_3 = P(E_3) = P(E_1) + P(E_2)$$

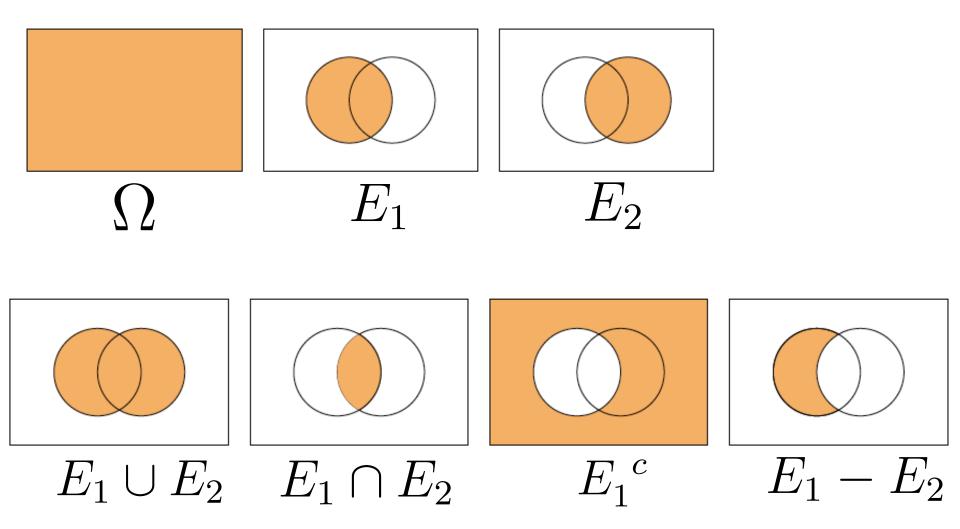
 Q_{\cdot}

****** Toss a coin 3 times

The event "exactly 2 heads appears" and "exactly 2 tails appears" are disjoint.



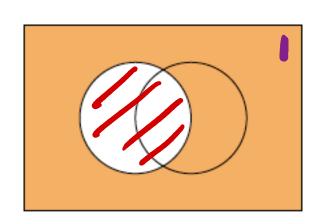
Venn Diagrams of events as sets



Properties of probability

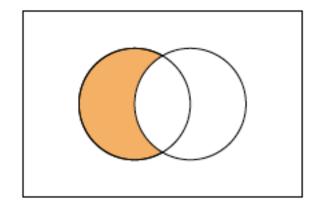
* The complement

$$P(E^c) = 1 - P(E)$$



****** The difference

$$P(E_1 - E_2) = P(E_1) - P(E_1 \cap E_2)$$



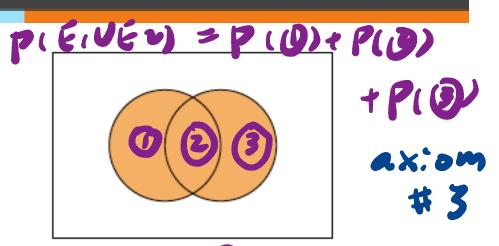
Properties of probability

***** The union

$$P(E_1 \cup E_2) =$$

$$P(E_1) + P(E_2)$$

$$-P(E_1 \cap E_2)$$



$$P(E_i) = P(B) + P(B)$$
multiple $P(E_b) = P(B)$

** The union of multiple E

$$P(E_1 \cup E_2 \cup E_3) = P(E_1) + P(E_2) + P(E_3)$$

$$-P(E_1 \cap E_2) - P(E_2 \cap E_3) - P(E_3 \cap E_1)$$

$$+P(E_1 \cap E_2 \cap E_3)$$

The Calculation of Probability

- * Discrete countable finite event
- ****** Discrete countable infinite event
- ****** Continuous event

Counting to determine probability of countable finite event

** From the last axiom, the probability of event **E** is the sum of probabilities of the disjoint outcomes $P(E) = \sum_{P(A)} P(A)$

$$P(E) = \sum_{A_i \in E} P(A_i)$$

If the outcomes are atomic and have equal probability, $E = N_E \cdot P(A_i)$

$$P(E) = \frac{number\ of\ outcomes\ in\ E}{total\ number\ of\ outcomes\ in\ \Omega}$$

Probability using counting: (1)

- ** Tossing a fair coin twice:
 - ** Prob. that it appears the same?

** Prob. that at least one head appears?

Probability using counting: (2)

4 rolls of a 5-sided die:

E: they all give different numbers

** Number of outcomes in the sample space

* Probability:
$$\frac{1E!}{152!} = \frac{5 \times 4 \times 3 \times 7}{5 \times 3}$$

Probability using counting: (2)

* What about N-1 rolls of a N-sided die?

E: they all give different numbers

** Number of outcomes that make the event happen:

* Number of outcomes in the sample space

Probability:

Probability by reasoning with the complement property

If P(E^c) is easier to calculate

$$P(E) = 1 - P(E^c)$$

Probability by reasoning with the complement property

** A person is taking a test with **N** true or false questions, and the chance he/she answers any question right is 50%, what's probability the person answers **at least** one question right?

E': None is correct
$$|E'| = ?$$

$$|D| = ?$$

$$P(E') = \frac{1}{2^{N}}$$

$$P(E) = 1 - \frac{1}{2^{N}}$$

Probability by reasoning with the union property

****** If E is either E1 or E2

$$P(E) = P(E_1 \cup E_2) =$$

$$P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

Probability by reasoning with the properties (2)

** A person may ride a bike on any day of the year equally. What's the probability that he/she rides on a Sunday or on 15th of a month? In 2001.

E: ride on Sun or 15th I day both

$$E = P(E) = ?$$

$$= P(E) U E =)$$

$$= P(E) + P(E) - P(E) E =)$$

$$= S2 - 12 - 12$$
months

Counting may not work

** This is one important reason to use the method of reasoning with properties

What if the event has infinite outcomes

- ** Tossing a coin until head appears
 - ** Coin is tossed at least 3 times

This event includes infinite # of outcomes.

And the outcomes don't have equal probability.

TTH, TTTH, TTTTH....

Assignments

Additional References

- ** Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- ** Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

