

"Probabilistic analysis is mathematical, but intuition dominates and guides the math" – Prof. Dimitri Bertsekas

Credit: wikipedia

Homework (I)

- ** Due 2/4 today at 11:59pm
- ** There is one optional problem with extra 5 points. (Won't be in exams)

What's "Probability" about?

- ** Probability provides mathematical tools/models to reason about uncertainty/randomness
- ** We deal with data, but often hypothetical, simplified
- ** The purpose is to reason how likely something will happen

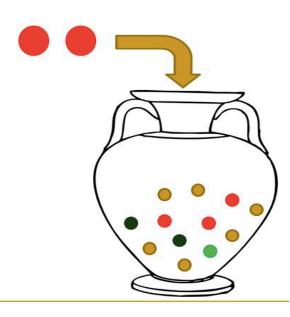
Objectives

- ** Probability a first look
 - ** Outcome and Sample Space
 - *** Event**
 - ** Probability
 - Probability axioms & Properties
 - * Calculating probability

Outcome

** An outcome A is a possible result of a random repeatable experiment

Random: uncertain, Nondeter-ministic, ...

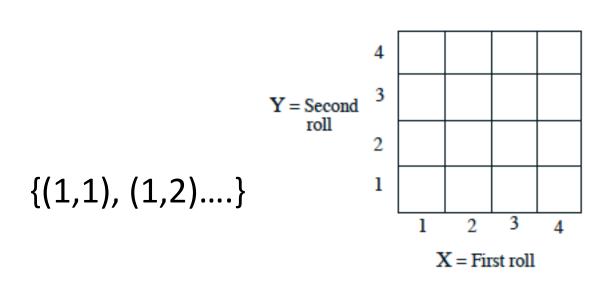


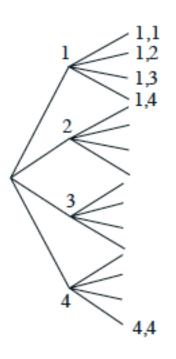
Sample space

- ** The Sample Space, Ω , is the set of all possible outcomes associated with the experiment
- **** Discrete or Continuous**

Sample Space example (1)

- ****** Experiment: we roll a 4sided-die twice
- ** Discrete Sample space:

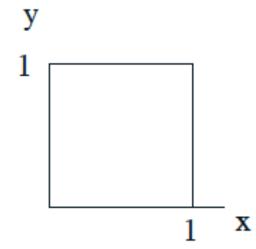




Sample Space example (2)

- ** Experiment: Romeo and Juliet's date
- **** Continuous** Sample space:

$$\Omega = \{(x, y) \mid 0 \le x, y \le 1\}$$



Sample Space depends on experiment (3)

- ***** Different coin tosses
 - * Toss a fair coin

** Toss a fair coin twice

** Toss until a head appears

Sample Space depends on experiment (4)

Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock with replacement?

** Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock without replacement? \mathbf{Q}

** Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock with replacement? What is the number of unique outcomes in the sample space?

A. 5 B. 7 C. 9

 Q_{\cdot}

** Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock without replacement? What is the number of unique outcomes in the sample space?

A. 5 B. 6 C. 9

Sample Space in real life

- ** Possible outrages of a power network
- ** Possible mutations in a gene
- ****** A bus' arriving time

Event

- ** An event **E** is a subset of the sample space Ω
- ** So an event is a set of outcomes that is a subset of Ω , ie.
 - * Zero outcome
 - ***** One outcome
 - ****** Several outcomes
 - ***** All outcomes

The same experiment may have different events

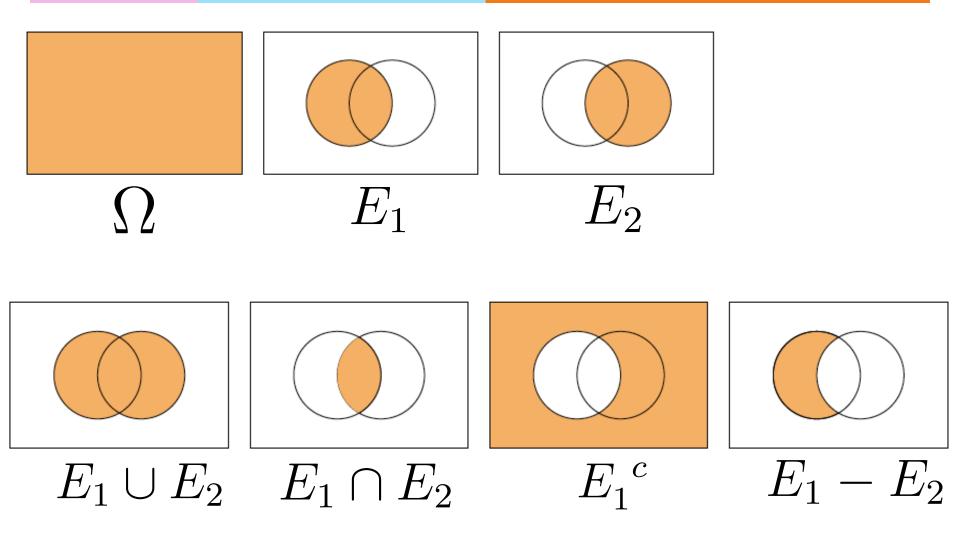
- * When two coins are tossed
 - ** Both coins come up the same?
 - ** At least one head comes up?

Some experiment may never end

Experiment: Tossing a coin until a head appears

E: Coin is tossed at least 3 times
This event includes infinite # of outcomes

Venn Diagrams of events as sets



Combining events

** Say we roll a six-sided die. Let

$$E_1 = \{1, 2, 5\} \text{ and } E_2 = \{2, 4, 6\}$$

- * What is $E_1 \cup E_2$
- ** What is $E_1 \cap E_2$
- * What is $E_1 E_2$
- ** What is $E_1^c = \Omega E_1$

Frequency Interpretation of Probability

Given an experiment with an outcome **A**, we can calculate the probability of A by repeating the experiment over and over

repeating the experiment over and over
$$P(A) = \lim_{N \to \infty} \frac{number\ of\ time\ A\ occurs}{N}$$
 \divideontimes So,

$$\sum_{A_i \in \Omega} 0 \le P(A) \le 1$$

$$\sum_{A_i \in \Omega} P(A_i) = 1$$

Axiomatic Definition of Probability

- A probability function is any function P that maps sets to real number and satisfies the following three axioms:
 - 1) Probability of any event E is non-negative

$$P(E) \ge 0$$

2) Every experiment has an outcome

$$P(\Omega) = 1$$

Axiomatic Definition of Probability

3) The probability of disjoint events is additive

$$P(E_1 \cup E_2 \cup ... \cup E_N) = \sum_{i=1}^{N} P(E_i)$$

$$if \ E_i \cap E_j = \emptyset \ for \ all \ i \neq j$$

 Q_{1}

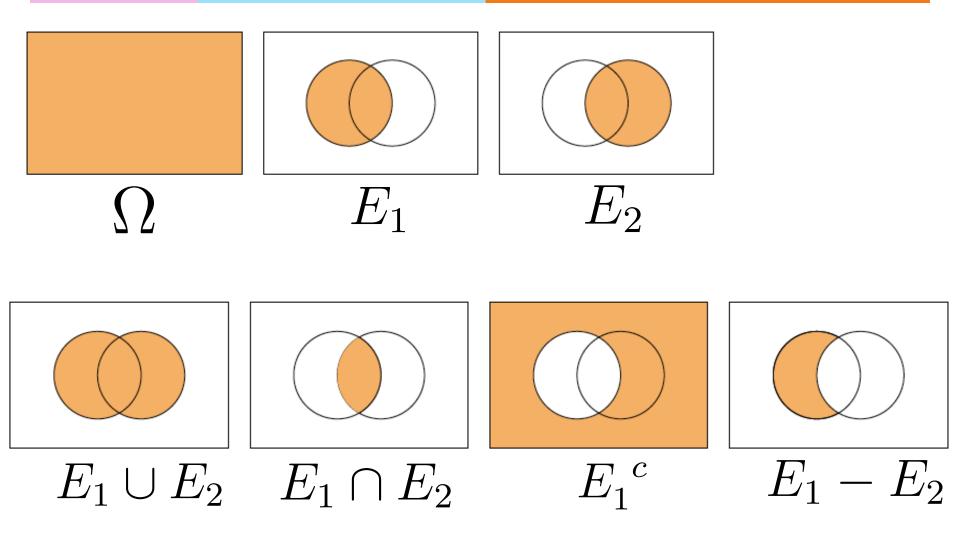
****** Toss a coin 3 times

The event "exactly 2 heads appears" and "exactly 2 tails appears" are disjoint.

A. True

B. False

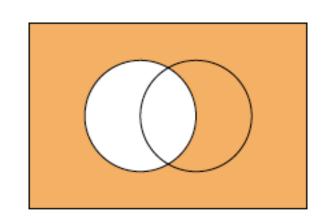
Venn Diagrams of events as sets



Properties of probability

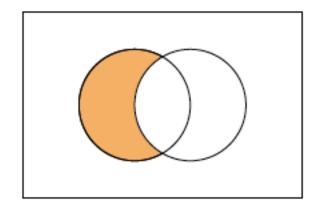
* The complement

$$P(E^c) = 1 - P(E)$$



****** The difference

$$P(E_1 - E_2) = P(E_1) - P(E_1 \cap E_2)$$



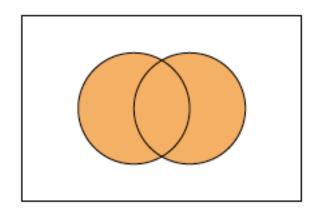
Properties of probability

***** The union

$$P(E_1 \cup E_2) =$$

$$P(E_1) + P(E_2)$$

$$-P(E_1 \cap E_2)$$



** The union of multiple E

$$P(E_1 \cup E_2 \cup E_3) = P(E_1) + P(E_2) + P(E_3)$$
$$-P(E_1 \cap E_2) - P(E_2 \cap E_3) - P(E_3 \cap E_1)$$
$$+P(E_1 \cap E_2 \cap E_3)$$

The Calculation of Probability

- * Discrete countable finite event
- ****** Discrete countable infinite event
- ***** Continuous event

Counting to determine probability of countable finite event

** From the last axiom, the probability of event **E** is the sum of probabilities of the disjoint outcomes $D(E) = \sum_{D(A)} D(A)$

$$P(E) = \sum_{A_i \in E} P(A_i)$$

If the outcomes are atomic and have equal probability,

$$P(E) = \frac{number\ of\ outcomes\ in\ E}{total\ number\ of\ outcomes\ in\ \Omega}$$

Probability using counting: (1)

- ** Tossing a fair coin twice:
 - ** Prob. that it appears the same?

** Prob. that at least one head appears?

Probability using counting: (2)

4 rolls of a 5-sided die:

E: they all give different numbers

** Number of outcomes that make the event happen:

* Number of outcomes in the sample space

Probability:

Probability using counting: (2)

* What about N-1 rolls of a N-sided die?

E: they all give different numbers

** Number of outcomes that make the event happen:

* Number of outcomes in the sample space

* Probability:

Probability by reasoning with the complement property

If P(E^c) is easier to calculate

$$P(E) = 1 - P(E^c)$$

Probability by reasoning with the complement property

A person is taking a test with N true or false questions, and the chance he/she answers any question right is 50%, what's probability the person answers at least one question right?

Probability by reasoning with the union property

****** If E is either E1 or E2

$$P(E) = P(E_1 \cup E_2) =$$

$$P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

Probability by reasoning with the properties (2)

A person may ride a bike on any day of the year equally. What's the probability that he/she rides on a Sunday or on 15th of a month?

Counting may not work

** This is one important reason to use the method of reasoning with properties

What if the event has outcomes

- ** Tossing a coin until head appears
 - ** Coin is tossed at least 3 times

This event includes infinite # of outcomes.

And the outcomes don't have equal probability.

TTH, TTTH, TTTTH....

Assignments

Additional References

- ** Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

