Probability and Statistics for Computer Science

"A major use of probability in statistical inference is the updating of probabilities when certain events are observed" – Prof. M.H. DeGroot

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 2.9.2021

Warm up

i) Ways of forming a queue with (0 students
$$10!$$
 $10 \times 9 \times \cdots \times 1 = (0!)$

2) Ways of forming a queue with 5 students
out of 10 students
$$10\frac{1}{5}! = (10) \cdot 5!$$
 $10 \times 9 \times 8 \times 7 \times 6$

Which is larger?

i) $\binom{110}{70}$ 2) $\binom{110}{40}$ A. 1) B. 2) $\binom{N}{K} = \binom{N}{N-K}$ IC. None

Last time

% Probability a first look

- # Outcome and Sample Space
- ℁ Event
- % Probability

Probability axioms & Properties

* Calculating probability

Objectives

% Probability

- * More probability calculation
- * Conditional Probability
 - # Bayes rule
 - % Independence

Senate Committee problem

The United States Senate contains **two** senators from each of the **50** states. If a committee of eight senators is selected at random, what is the probability that it will contain <u>at least one</u> of the two senators from **IL**?

C: None from 1L

$$P(E) = I - P(E') \frac{98}{(8)} - IE'$$

$$P(E') = \frac{(8)}{(8)} - IE'$$

P(1 from IL) + P(2 from IL) $\binom{2}{1} \binom{98}{1} + \binom{2}{2} \binom{98}{6}$ $\binom{100}{8}$

Probability: Birthday problem

* Among 30 people, what is the probability that at least 2 of them celebrate their birthday on the same day? Assume that there is no February 29 and each day of the year is equally likely to be a birthday. E: No two share B-day HY You 2/1 2/2 $P(E') = \frac{|E'|}{|\mathcal{N}|}$ 2/1 2/2 365! 365 Pz. 3652365 * · · ·

Motivation of conditional probability If a person in CS tested positive for Covid, how likely does this person have the disease? T: test positive D: has the disease P(DIT)

Example:

An insurance company knows in a population of 100 thousands females, 89.835% expect to live to age 60, while 57.062% can expect to live to 80. Given a woman at the age of 60, what is the probability that she lives to 80?

Given the condition she is 60 already, the size of the sample space for the outcomes has changed to

89,835 instead of 100,000

* The probability of A given B

A : a woman lives to 80 $P(A|B) = \frac{57,062}{89,835} = 0.6352$

 $B: \text{a woman is} \\ \text{at 60 now} \quad P(A|B) = \frac{P(A \cap B)}{P(B)} \xrightarrow{57,62}_{(30,00)} \\ \frac{89,835}{100} \\ \frac{89,85}{100} \\$

While
$$P(A) = \frac{57,062}{100,000} = 0.57062$$

Conditional Probability: die example

Conditional probability, that is?

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \quad \underbrace{\frac{P(B) \neq 0}{\frac{2}{25}}}_{= \frac{2}{7/25}} = \frac{2}{7}$$

Conditional probability, that is?

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \quad P(B) \neq 0$$

Still a probability ! It satisfies
the three axioms $P(A|B) = P(A|B) = P(A|B) = P(A|B) = P(A|B) = P(A|B)$

$$P(A|B) + P(A^{C}|B) = P(A|B) = P(A|B) = P(A|B) = P(A|B)$$

Venn Diagrams of events as sets

Multiplication rule using conditional probability

Joint event

 $P(A|B) = \frac{P(A \cap B)}{P(B)} P(B) \neq 0$ $\Rightarrow P(A \cap B) = P(A|B)P(B)$

Symmetry of joint event in terms of conditional prob.

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \quad P(B) \neq 0$$

$\Rightarrow P(A \cap B) = P(A|B)P(B)$ $\Rightarrow P(B \cap A) = P(B|A)P(A)$

Symmetry of joint event in terms of conditional prob. $B \cap A = A \cap B$ $\Rightarrow P(B \cap A) = P(A \cap B)$ P(A|B)P(B) = P(B|A)P(A)

The famous **Bayes** rule

P(A|B)P(B) = P(B|A)P(A) $\implies P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

Thomas Bayes (1701-1761)

Bayes rule: lemon cars

There are two car factories, **A** and **B**, that supply the same dealer. Factory A produced **1000** cars, of which **10** were lemons. Factory **B** produced 2 cars and both were lemons. You bought a car that turned out to be a lemon. What is the probability that it came from P(L(B).P(B) P(BL)= factory **B**?

Bayes rule: lemon cars

There are two car factories, A and B, that supply the same dealer. Factory A produced 1000 cars, of which 10 were lemons. Factory B produced 2 cars and both were lemons. You bought a car that turned out to be a lemon. What is the probability that it came from factory B?

$$P(B|L) = \frac{P(L|B)P(B)}{P(L)}$$

Bayes rule: lemon cars

Given the above information, what is the probability that it came from factory A?

$$P(A|L) = ? \quad I - P(B|L)$$

Simulation of Conditional Probability

http:// www.randomservices.org/ random/apps/ **ConditionalProbabilityExperim** ent.html

Commutative $A \cap B = B \cap A$ $A \cup B = B \cup A$ Associative $(A \cap B) \cap C = A \cap (B \cap C)$ $(A \cup B) \cup C = A \cup (B \cup C)$ Distributive $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Lempotent

$$A n A = A$$

 $A U A = A$
 $I dent:ty$
 $A U \phi = A$
 $A n \phi = \phi$
 $A U SZ = SZ$
 $A n SZ = A$

Complement $AUA' = \mathcal{R}$ $A \cap A = \phi$ $\mathcal{N} = \phi$ $\phi = \mathcal{I}$ De Morgan's $(A \cap B) = A \cup B'$ $(AUB) = A \cap B$

Additional References

- * Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

Assignments

Work on Module Week 3 on Compass

** Next time: More on independence and conditional probability

See you next time

See You!

