Probability and Statistics for Computer Science

"A major use of probability in statistical inference is the updating of probabilities when certain events are observed" – Prof. M.H. DeGroot

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 2.9.2021

Last time

% Probability a first look

- # Outcome and Sample Space
- ℁ Event
- % Probability

Probability axioms & Properties

* Calculating probability

Objectives

% Probability

- * More probability calculation
- * Conditional Probability
- # Independence

Senate Committee problem

The United States Senate contains **two** senators from each of the **50** states. If a committee of eight senators is selected at random, what is the probability that it will contain at least one of the two senators from **IL**?

Probability: Birthday problem

* Among 30 people, what is the probability that at least 2 of them celebrate their birthday on the same day? Assume that there is no February 29 and each day of the year is equally likely to be a birthday.

Motivation of conditional probability

Example:

An insurance company knows in a population of 100 thousands females, 89.835% expect to live to age 60, while 57.062% can expect to live to 80. Given a woman at the age of 60, what is the probability that she lives to 80?

Given the condition she is 60 already, the size of the sample space for the outcomes has changed to

89,835 instead of 100,000

* The probability of A given B

 $P(A|B) = \frac{P(A \cap B)}{P(B)}$ $P(B) \neq 0$

The "Size" analogy

Credit: Prof. Jeremy Orloff & Jonathan Bloom

A : a woman lives to 80 $P(A|B) = \frac{57,062}{89,835} = 0.6352$

B: a woman is at 60 now $P(A|B) = \frac{P(A \cap B)}{P(B)}$

While
$$P(A) = \frac{57,062}{100,000} = 0.57062$$

Conditional Probability: die example

Y

Throw 5-sided fair die twice.

$$A : max(X, Y) = 4$$
$$B : min(X, Y) = 2$$

Х

P(A|B) = ?

Conditional probability, that is?

$P(A|B) = \frac{P(A \cap B)}{P(B)} \quad P(B) \neq 0$

Multiplication rule using conditional probability

Joint event

 $P(A|B) = \frac{P(A \cap B)}{P(B)} \quad P(B) \neq 0$

 $\Rightarrow P(A \cap B) = P(A|B)P(B)$

Multiplication using conditional probability

$P(A \cap B) = P(A|B)P(B)$

 $P(soup \cap meat) = P(meat|soup)P(soup) = 0.5 \times 0.8 = 0.4$

Symmetry of joint event in terms of conditional prob.

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \quad P(B) \neq 0$$

$\Rightarrow P(A \cap B) = P(A|B)P(B)$ $\Rightarrow P(B \cap A) = P(B|A)P(A)$

Symmetry of joint event in terms of conditional prob.

$\therefore P(B \cap A) = P(A \cap B)$

P(A|B)P(B) = P(B|A)P(A)

The famous **Bayes** rule

P(A|B)P(B) = P(B|A)P(A) $\implies P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

Thomas Bayes (1701-1761)

There are two car factories, **A** and **B**, that supply the same dealer. Factory A produced **1000** cars, of which **10** were lemons. Factory **B** produced 2 cars and both were lemons. You bought a car that turned out to be a lemon. What is the probability that it came from factory **B**?

There are two car factories, A and B, that supply the same dealer. Factory A produced 1000 cars, of which 10 were lemons. Factory B produced 2 cars and both were lemons. You bought a car that turned out to be a lemon. What is the probability that it came from factory B?

$$P(B|L) = \frac{P(L|B)P(B)}{P(L)}$$

Given the above information, what is the probability that it came from factory A?

$$P(A|L) = ?$$

Given the above information, what is the probability that it came from factory A?

$$P(A|L) = ?$$

$$P(A|L) = \frac{P(L|A)P(A)}{P(L)}$$
Or in this case
$$P(A|L) = 1 - P(B|L) \leftarrow$$

Given the above information, what is the probability that it came from factory A?

$$P(A|L) = ?$$

$$P(A|L) = \frac{P(L|A)P(A)}{P(L)} \text{ Or in this case}$$

$$P(A|L) = 1 - P(B|L) \longleftarrow =$$

Total probability

$P(A) = P(A \cap B_1) + P(A \cap B_2) + P(A \cap B_3)$ = $P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + P(A|B_3)P(B_3)$

Total probability general form

$$P(A) = \sum_{j} (P(A|B_j)P(B_j))$$

if $B_i \cap B_j = \emptyset$ for all $i \neq j$

Bayes rule using total prob.

 $P(B_j|A) = \frac{P(A|B_j)P(B_j)}{P(A)}$ $= \frac{P(A|B_j)P(B_j)}{\sum_j P(A|B_j)P(B_j)}$

Bayes rule: rare disease test

There is a blood test for a rare disease. The frequency of the disease is 1/100,000. If one has it, the test confirms it with probability 0.95. If one doesn't have, the test gives false positive with probability 0.001. What is P(D|T), the probability of having disease given a positive test result?

$$\begin{split} P(D|T) &= \frac{P(T|D)P(D)}{P(T)} & \text{Using total prob.} \\ &= \frac{P(T|D)P(D)}{P(T|D)P(D) + P(T|D^c)P(D^c)} \end{split}$$

Bayes rule: rare disease test

There is a blood test for a rare disease. The frequency of the disease is **1/100,000**. If one has it, the test confirms it with probability 0.95. If one doesn't have, the test gives false positive with probability **0.001**. What is P(D|T), the probability of having disease given a positive test result?

$$P(D|T) = \frac{P(T|D)P(D)}{P(T|D)P(D) + P(T|D^c)P(D^c)}$$

Independence

% One definition:

P(A|B) = P(A) orP(B|A) = P(B)

Whether A happened doesn't change the probability of B and vice versa

Independence: example

Suppose that we have a fair coin and it is tossed twice. let A be the event "the first toss is a head" and B the event "the two outcomes are the same."

Independence

 $\Rightarrow P(A \cap B) = P(A)P(B)$

Testing Independence:

Suppose you draw one card from a standard deck of cards. E₁ is the event that the card is a King, Queen or Jack. E₂ is the event the card is a Heart. Are E₁ and E₂ independent?

Simulation of Conditional Probability

http:// www.randomservices.org/ random/apps/ **ConditionalProbabilityExperim** ent.html

Additional References

- * Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

Addition material on Counting

Addition principle

Suppose there are *n* disjoint events, the number of outcomes for the union of these events will be the sum of the outcomes of these events.

Multiplication principle

- Suppose that a choice is made in two consecutive stages
 Stage 1 has *m* choices
 - Stage 2 has n choices
- * Then the total number of choices is mn

Multiplication: example

How many ways are there to draw two cards of the same suit from a standard deck of 52 cards? The draw is without replacement.

Multiplication: example

How many ways are there to draw two cards of the same suit from a standard deck of 52 cards? The draw is without replacement.

Permutations (order matters)

From 10 digits (0,...9) pick 3 numbers for a CS course number (no repetition), how many possible numbers are there?

Permutations (order matters)

From 10 digits (0,...9) pick 3 numbers for a CS course number (no repetition), how many possible numbers are there? 10×9×8 = P(10,3) = 720

$$P(n,r) = \frac{n!}{(n-r)!}$$

Combinations (order not important)

* A graph has N vertices, how many edges could there exist at most? Edges are undirectional.

$$C(n,r) = \frac{n!}{(n-r)!r!} = \frac{P(n,r)}{r!} = C(n,n-r)$$

Combinations (order not important)

* A graph has N vertices, how many edges could there exist at most? Edges are undirectional.

$$C(n,r) = \frac{n!}{(n-r)!r!} = \frac{P(n,r)}{r!} = C(n,n-r)$$

Partition

How many ways are there to rearrange ILLINOIS?

3!2!1!1!1! \\\

* General form n!

 $n_1!n_2!...n_r!$

Allocation

Putting 6 identical letters into 3 mailboxs (empty allowed)

Choose 2 from the 8 positions

Allocation

Putting 6 identical letters into 3 mailboxs (empty allowed)

Choose 2 from the 8 positions:

Counting: How many think pairs could there be?

* Q. Estimate for # of pairs from different groups. There are 4 even sized groups in a class of 200

Random experiment

- We want the following experiment a random experiment for probabilistic study?
 $2H_{2(g)} + O_{2(g)} ♀ 2H_2O(g)$
 - A. Yes
 - B. No

Size of sample space

- * Q: What is the size of the sample space of this experiment? Deal 5 different cards out of a fairly shuffled deck of standard poker (order matters).
 - **A**. C(52,5) **B**. P(52,5) **C**. 52

Roll a 4-sided die twice

The event "max is 4" and "sum is 4" are disjoint.

A. True

B. False

Probability

* Q: A deck of ordinary cards is shuffled and 13 cards are dealt. What is the probability that the last card dealt is an ace?

- **A**. 4*P(51,12)/P(52,13) **B**. 4/13
- **C**. 4*C(51,12)/C(52,13)

Allocation: beads

Putting 3000 beads randomly into 20 bins (empty allowed)

$C(3019, 19) = \frac{3019!}{19!3000!}$

See you next time

See You!

