Probability and Statistics
for Computer Science

"A major use of probability in statistical inference is the updating of probabilities when certain events are observed" -Prof. M.H. DeGroot

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 2.9.2021

Last time

✺Probability a first look

- ✺ Outcome and Sample Space
- ✺ Event
- ✺ Probability

Probability axioms & Properties

✺ Calcula4ng probability

Objectives

*** Probability

- * More probability calculation
- **** Conditional Probability**
-

Senate Committee problem

The United States Senate contains **two** senators from each of the **50** states. If a committee of eight senators is selected at random, what is the probability that it will contain at least one of the two senators from IL?

Probability: Birthday problem

✺ Among 30 people, what is the probability that at least 2 of them celebrate their birthday on the same day? Assume that there is no February 29 and each day of the year is equally likely to be a birthday.

Keta Motivation of conditional probability

✺Example:

An insurance company knows in a population of 100 thousands females, 89.835% expect to live to age 60, while 57.062% can expect to live to 80. Given a woman at the age of 60, what is the probability that she lives to 80?

* Given the condition she is 60 already, the size of the sample space for the outcomes has changed to

89,835 instead of 100,000

✺ The probability of *A* given *B*

 $P(A|B) = \frac{P(A \cap B)}{P(B)}$ $\overline{P(B)}$ $P(B) \neq 0$

The "Size" analogy

Credit: Prof. Jeremy Orloff & Jonathan Bloom

- *A* : a woman lives to 80 $P(A|B) = \frac{57,062}{80,025}$ 89, 835 $= 0.6352$
- *B* : a woman is at 60 now $P(A|B) = \frac{P(A \cap B)}{P(B)}$ $\overline{P(B)}$

While
$$
P(A) = \frac{57,062}{100,000} = 0.57062
$$

Conditional Probability: die example

Y

Throw 5-sided fair die twice.

$$
A: max(X, Y) = 4
$$

$$
B: min(X, Y) = 2
$$

$$
P(A|B) = ?
$$

X

Conditional probability, that is?

$P(A|B) = \frac{P(A \cap B)}{P(B)}$ $\overline{P(B)}$ $P(B)\neq 0$

Multiplication rule using conditional probability

 $*$ Joint event

 $P(A|B) = \frac{P(A \cap B)}{P(B)}$ $\frac{(21+D)}{P(B)}$ $P(B) \neq 0$

 $\Rightarrow [P(A \cap B) = P(A|B)P(B)]$

Multiplication using conditional probability

$P(A \cap B) = P(A|B)P(B)$

 $P(soup \cap meat)$ = $P(meat|soup)P(soup)$ $= 0.5 \times 0.8 = 0.4$

Symmetry of joint event in terms of conditional prob.

$$
P(A|B) = \frac{P(A \cap B)}{P(B)} \quad P(B) \neq 0
$$

$\Rightarrow P(A \cap B) = P(A|B)P(B)$ $\Rightarrow P(B \cap A) = P(B|A)P(A)$

Symmetry of joint event in terms of conditional prob.

$\cdot \cdot P(B \cap A) = P(A \cap B)$

 $P(A|B)P(B) = P(B|A)P(A)$

The famous **Bayes** rule

$P(A|B)P(B) = P(B|A)P(A)$ \Rightarrow $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$ $\overline{P(B)}$

Thomas Bayes (1701-1761)

There are two car factories, **A** and **B**, that supply the same dealer. Factory **A** produced **1000** cars, of which **10** were lemons. Factory **B** produced **2** cars and both were lemons. You bought a car that turned out to be a lemon. What is the probability that it came from factory **B**?

There are two car factories, A and B, that supply the same dealer. Factory A produced 1000 cars, of which 10 were lemons. Factory B produced 2 cars and both were lemons. You bought a car that turned out to be a lemon. What is the probability that it came from factory B?

$$
P(B|L) = \frac{P(L|B)P(B)}{P(L)}
$$

Given the above information, what is the probability that it came from factory A?

$$
P(A|L) = ?
$$

Given the above information, what is the probability that it came from factory A?

$$
P(A|L) = ?
$$

\n
$$
P(A|L) = \frac{P(L|A)P(A)}{P(L)}
$$
 Or in this case
\n
$$
P(A|L) = 1 - P(B|L)
$$

Given the above information, what is the probability that it came from factory A?

$$
P(A|L) = ?
$$

\n
$$
P(A|L) = \frac{P(L|A)P(A)}{P(L)}
$$
 Or in this case
\n
$$
P(A|L) = 1 - P(B|L) \longleftarrow
$$

Total probability

\overrightarrow{D} $P(A) = P(A \cap B_1) + P(A \cap B_2) + P(A \cap B_3)$ $= P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + P(A|B_3)P(B_3)$

Total probability general form

$$
P(A) = \sum_{j} (P(A|B_j)P(B_j))
$$

if $B_i \cap B_j = \emptyset$ for all $i \neq j$

Bayes rule using total prob.

 $P(B_j | A) = \frac{P(A|B_j)P(B_j)}{P(A)}$ $\overline{P(A)}$ = $P(A|B_i)P(B_i)$ \sum $\frac{1}{j} P(A|B_j)P(B_j)$

Bayes rule: rare disease test

probability 0.001. What is $P(D|T)$, the probability There is a blood test for a rare disease. The frequency of the disease is $1/100,000$. If one has it, the test confirms it with probability 0.95. If one doesn't have, the test gives false positive with of having disease given a positive test result?

> $P(D|T) = \frac{P(T|D)P(D)}{P(T)}$ $\overline{P(T)}$ = $P(T|D)P(D)$ $\overline{P(T|D)P(D) + P(T|D^c)P(D)}}$ Using total prob.

Bayes rule: rare disease test

probability 0.001 . What is $P(D|T)$, the probability There is a blood test for a rare disease. The frequency of the disease is **1/100,000**. If one has it, the test confirms it with probability 0.95. If one doesn't have, the test gives false positive with of having disease given a positive test result?

$$
P(D|T) = \frac{P(T|D)P(D)}{P(T|D)P(D) + P(T|D^c)P(D^c)}
$$

Independence

* One definition:

$P(A|B) = P(A)$ or $P(B|A) = P(B)$

Whether A happened doesn't change the probability of B and vice versa

Independence: example

 $*$ Suppose that we have a fair coin and it is tossed twice. let A be the event "the first toss is a head" and B the event "the two outcomes are the same."

Independence

**** Alternative definition** $P(A|B) = P(A)$ $\frac{P(A \cap B)}{P(B)} = P(A)$

$$
\Rightarrow [P(A \cap B) = P(A)P(B)]
$$

Testing Independence:

✺ Suppose you draw one card from a standard deck of cards. E_1 is the event that the card is a King, Queen or Jack. E_2 is the event the card is a Heart. Are E_1 and E_2 independent?

Simulation of Conditional Probability

 $http://$ www.randomservices.org/ random/apps/ ConditionalProbabilityExperim ent.html

Additional References

- ✺ Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- ✺ Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

Addition material on Counting

Addition principle

✺Suppose there are *n* disjoint events, the number of outcomes for the union of these events will be the sum of the outcomes of these events.

Multiplication principle

- ✺Suppose that a choice is made in two consecutive stages ✺Stage 1 has *m* choices
	- ✺Stage 2 has *n* choices
- ✺Then the total number of choices is *mn*

Multiplication: example

✺How many ways are there to draw two cards of the same suit from a standard deck of 52 cards? The draw is without replacement.

Multiplication: example

✺How many ways are there to draw two cards of the same suit from a standard deck of 52 cards? The draw is without replacement.

Permutations (order matters)

✺ From 10 digits (0,…9) pick 3 numbers for a CS course number (no repetition), how many possible numbers are there?

Permutations (order matters)

✺ From 10 digits (0,…9) pick 3 numbers for a CS course number (no repetition), how many possible numbers are there? $10\times9\times8 = P(10,3) = 720$

$$
P(n,r) = \frac{n!}{(n-r)!}
$$

Combinations (order not important)

 $*$ A graph has N vertices, how many edges could there exist at most? Edges are undirectional.

$$
C(n,r) = \frac{n!}{(n-r)!r!} = \frac{P(n,r)}{r!} = C(n, n-r)
$$

Combinations (order not important)

 $*$ A graph has N vertices, how many edges could there exist at most? Edges are undirectional.

$$
C(N,2) = Nx(N-1)/2
$$

$$
C(n,r) = \frac{n!}{(n-r)!} = \frac{P(n,r)}{1-r} = C(n, n-r)
$$

$$
C(n,r) = \frac{r!}{(n-r)!r!} = \frac{1}{r!} \frac{(r!r)!}{r!} = C(n, n-r)
$$

Partition

* How many ways are there to rearrange **ILLINOIS?** 8!

3!2!1!1!1!

****** General form $n!$

 $n_1!n_2!...n_r!$

Allocation

[₩] Putting 6 identical letters into 3 mailboxs (empty allowed)

Choose 2 from the 8 positions

Allocation

[₩] Putting 6 identical letters into 3 mailboxs (empty allowed)

Choose 2 from the 8 positions: $C(8,2) = 28$

Counting: How many think pairs

[‰]Q. Estimate for # of pairs from different groups. There are 4 even sized groups in a class of 200

Random experiment

- * Q: Is the following experiment a random experiment for probabilistic study? $2H_{2(g)} + O_{2(g)} = 2H_2O_{(1)}$
	- A. Yes
	- B. No

Size of sample space

- \mathscr{C} Q: What is the size of the sample space of this experiment? Deal 5 different cards out of a fairly shuffled deck of standard poker (order matters).
	- **A**. C(52,5) **B**. P(52,5) **C**. 52

Event

$*$ Roll a 4-sided die twice

The event "max is 4 " and "sum is 4 " are disjoint.

A. True

B. False

Probability

✺ Q: A deck of ordinary cards is shuffled and 13 cards are dealt. What is the probability that the last card dealt is an ace?

- **A**. 4*P(51,12)/P(52,13) **B**. 4/13
- **C**. $4 * C(51,12) / C(52,13)$

Allocation: beads

*** Putting 3000 beads randomly** into 20 bins (empty allowed)

3019! $C(3019, 19) =$ 19!3000!

See you next time

See You!

