Probability and Statistics 7 for Computer Science

Credit: wikipedia

"It's straightforward to link a number to the outcome of an experiment. The result is a Random variable." ---Prof. Forsythe

Random variable is a function, it is not the same as in $X = X+1$

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 2.16.2021

Random numbers

- ✺ Amount of money on a bet
- $*$ Age at retirement of a population
- ✺ Rate of vehicles passing by the toll
- ✺ Body temperature of a puppy in its pet clinic
- $*$ Level of the intensity of pain in a toothache

Random variable as vectors

Brain imaging of Human emotions A) Moral conflict B) Multi-task C) Rest

A. McDonald et al. NeuroImage doi: 10.1016/ j.neuroimage.2016.10.048

Content

- ✺ Random Variable
- **EXA:** Probability distribution
- $*$ Cumulative distribution
- ✺ Joint probability
- ✺ Independence of random variables

Random variables

Random variables

$*$ The values of a random variable can be either **discrete**, **con5nuous** or **mixed**.

Discrete Random variables

✺ The range of a discrete random variable is a countable set of real numbers.

Random Variable Example

✺ **Number of pairs in a hand of 5 cards**

- ✺ Let a single outcome be the hand of 5 cards
- ✺ Each outcome maps to values in the set of numbers $\{0, 1, 2\}$

Random Variable Example

- ✺ **Number of pairs in a hand of 6 cards**
	- ✺ Let a single outcome be the hand of 6 cards
	- $*$ What is the range of values of this random variable?

Q: Random Variable

WE If we roll a 3-sided fair die, and define random variable *U, such that*

A. $\{-1, 0, 1\}$ B. $\{0, 1\}$

Three important facts of Random variables

✺Random variables have **probability functions**

✺Random variables can be **conditioned** on events or other random variables

✺Random variables have **averages**

Random variables have **probability functions**

- $*$ Let X be a random variable
- $*$ The set of outcomes
	- is an event with probability

$$
P(X=x_0)
$$

X is the random variable x_0 is any unique instance that *X* takes on

Probability Distribution

- $\mathscr{F}(X = x)$ is called the probability distribution for all possible x
- $\mathscr{C}(X = x)$ is also denoted as $P(x)$ or $p(x)$
- [•] *W* $P(X = x) ≥ 0$ for all values that *X* can take, and is 0 everywhere else
- ✺ The sum of the probability distribution is 1 $\sum P(x) = 1$

Cumulative distribution

$\mathscr{F}(X \leq x)$ is called the cumulative distribution function of X

 $\mathscr{F}(X \leq x)$ is also denoted as $f(x)$

 $\mathscr{F}(X \leq x)$ is a non-decreasing function of x

Probability distribution and cumulativé distribution

Example 3 Give the random variable X, 1 \boldsymbol{x} 1/2 $X(\omega) = \begin{cases} 1 & outcome\ of\ \omega\ is\ head \end{cases}$ 0 outcome of ω is tail 0 $p(x)$ $\uparrow P(X = x)$ $f(x)$ $\uparrow P(X \leq x)$ 1 \boldsymbol{x} 1/2 0 1

Function of random variables: die example

Roll 4-sided fair die twice.

Define these random variables:

X, the values of 1st roll *Y*, the values of 2nd roll Sum $S = X + Y$ Difference $D = X - Y$

Size of Sample Space $= ?$

Random variable: die example

 $P(S = 7)$ $P(D \le -1)$

Probability distribution of the sum of two random variables

✺ Give the random variable *S in the 4 sided die, whose range is* {2,3,4,5,6,7,8}, probability distribution of S. *S* 2 3 4 5 6 7 8 $p(s)$ 1/16

Probability distribution of the difference' of two random variables

^{● ■} Give the random variable D = X-Y,</sup> *what is the probability distribution of D?*

Conditional Probability

✺ The probability of *A* given *B*

 $P(A|B) = \frac{P(A \cap B)}{P(B)}$ $\overline{P(B)}$ $P(B) \neq 0$

The "Size" analogy

Credit: Prof. Jeremy Orloff & Jonathan Bloom

Conditional probability distribution of random variables

Konally The conditional probability distribution of *X given Y* is

$$
P(x|y) = \frac{P(x, y)}{P(y)} \qquad P(y) \neq 0
$$

Conditional probability distribution of random variables

- **EXECTE:** The conditional probability distribution of *X given Y* is $P(x|y) = \frac{P(x, y)}{P(y)}$ $\frac{P(y)}{P(y)}$ $P(y) \neq 0$
- $*$ The joint probability distribution of two random variables *X* and *Y* is $P({X = x} \cap {Y = y})$

$$
\sum P(x|y) = 1
$$

Get the marginal from joint distri.

 $*$ We can recover the individual probability distributions from the joint probability distribution

$$
P(x) = \sum_{y} P(x, y)
$$

$$
P(y) = \sum_{x} P(x, y)
$$

Joint probabilities sum to 1

✺ The sum of the joint probability distribution

 $\sum P(x,y)=1$ \boldsymbol{y} \boldsymbol{x}

Joint Probability Example

 $*$ Tossing a coin twice, we define random variable *X and Y* for each toss.

$$
X(\omega) = \begin{cases} 1 & \text{outcome of } \omega \text{ is head} \\ 0 & \text{outcome of } \omega \text{ is tail} \end{cases}
$$

 $Y(\omega) = \begin{cases} 1 & outcome\ of\ \omega\ is\ head \ 0 & outcome\ of\ \omega\ is\ head \end{cases}$ 0 outcome of ω is tail

Joint probability distribution example

Joint Probability Example

Now we define Sum $S = X + Y$, Difference $D = X - Y$. *S* takes on values $\{0,1,2\}$ and D takes on values $\{-1, 0, 1\}$

$$
X(\omega) = \begin{cases} 1 & \text{outcome of } \omega \text{ is head} \\ 0 & \text{outcome of } \omega \text{ is tail} \end{cases}
$$

 $Y(\omega) = \begin{cases} 1 & outcome\ of\ \omega\ is\ head \end{cases}$ 0 outcome of ω is tail

Joint Probability Example

Suppose coin is fair, and the tosses are independent

Joint probability distribution example

Independence of random variables

✺ Random variable *X and Y* are independent if

$$
P(x, y) = P(x)P(y) \text{ for all } x \text{ and } y
$$

- $*$ In the previous coin toss example ✺ Are *X* and *Y* independent?
	- **● Are S and D independent?**

Joint probability distribution example

Joint probability distribution example

Conditional probability distribution example

$$
P(s|d) = \frac{P(s,d)}{P(d)}
$$

$$
-1 \quad 0 \quad 1 \qquad D
$$

$$
\boldsymbol{D}
$$

Bayes rule for random variable

✺ Bayes rule for events generalizes to random variables $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$ $\overline{P(B)}$ $P(x|y) = \frac{P(y|x)P(x)}{P(y)}$ $P(y)$ = $P(y|x)P(x)$ **Total Probability**

 $\sum_{x} P(y|x)P(x)$

Conditional probability distribution **example**

$$
P(s|d) = \frac{P(s, d)}{P(d)} \qquad \qquad \text{-1} \qquad 0 \qquad 1 \qquad D
$$

$$
\mathcal{S} = \begin{bmatrix} 0 & 0 & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix}
$$

$$
P(D = -1|S = 1) = \frac{P(S = 1|D = -1)P(D = -1)}{P(S = 1)} = \frac{1 \times \frac{1}{4}}{\frac{1}{2}}
$$

Additional References

- ✺ Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- ✺ Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

