Probability and Statistics for Computer Science

Credit: wikipedia

"It's straightforward to link a number to the outcome of an experiment. The result is a **Random variable**." ---Prof. Forsythe

Random variable is a function, it is not the same as in X = X+1

Random numbers

- * Amount of money on a bet
- ** Age at retirement of a population
- ** Rate of vehicles passing by the toll
- ** Body temperature of a puppy in its pet clinic
- ** Level of the intensity of pain in a toothache

Random variable as vectors

Brain imaging of Human emotions
A) Moral conflict
B) Multi-task
C) Rest

A. McDonald et al. NeuroImage doi: 10.1016/j.neuroimage.2016.10.048

Content

- ** Random Variable
- ****** Probability distribution
- ****** Cumulative distribution
- # Joint probability
- ****** Independence of random variables

Random variables

Random variables

** The values of a random variable can be either discrete, continuous or mixed.

Discrete Random variables

** The range of a discrete random variable is a countable set of real numbers.

Random Variable Example

**** Number of pairs in a hand of 5 cards**

- * Let a single outcome be the hand of 5 cards
- * Each outcome maps to values in the set of numbers {0, 1, 2}

Random Variable Example

- **** Number of pairs in a hand of 6 cards**
 - ** Let a single outcome be the hand of 6 cards
 - ** What is the range of values of this random variable?

Q: Random Variable

** If we roll a 3-sided fair die, and define random variable U, such that

B. {0, 1}

Three important facts of Random variables

- ** Random variables have probability functions
- ** Random variables can be conditioned on events or other random variables
- ** Random variables have averages

Random variables have probability functions

- ** Let X be a random variable
- ** The set of outcomes is an event with probability

$$P(X = x_0)$$

X is the random variable x_0 is any unique instance that X takes on

Probability Distribution

- # P(X = x) is called the probability distribution for all possible x
- # P(X = x) is also denoted as P(x) or p(x)
- $\# P(X = x) \ge 0$ for all values that X can take, and is 0 everywhere else
- ** The sum of the probability distribution is 1 $\sum P(x) = 1$

Cumulative distribution

- $\# P(X \le x)$ is called the cumulative distribution function of X
- $\# P(X \le x)$ is also denoted as f(x)
- $\# P(X \le x)$ is a non-decreasing function of x

Probability distribution and cumulative distribution

Give the random variable **X**,

$$X(\omega) = \begin{cases} 1 & outcome \ of \ \omega \ is \ head \\ 0 & outcome \ of \ \omega \ is \ tail \end{cases}$$

$$p(x) \bigwedge P(X = x) \qquad f(x) \bigwedge P(X \le x)$$

Function of random variables: die example

Roll 4-sided fair die twice.

Define these random variables:

X, the values of 1st roll Y, the values of 2nd roll Sum S = X + Y

Difference D = X - Y

Size of Sample Space = ?

Random variable: die example

$$D = X-Y$$

$$Y = \begin{bmatrix} -3 & -2 & -1 & 0 \\ 3 & -2 & -1 & 0 & 1 \\ 2 & -1 & 0 & 1 & 2 \\ 1 & 0 & 1 & 2 & 3 \end{bmatrix}$$

$$P(S=7)$$

$$P(D \le -1)$$

Probability distribution of the sum of two random variables

Give the random variable S in the 4sided die, whose range is {2,3,4,5,6,7,8}, probability distribution of S.

Probability distribution of the difference of two random variables

Give the random variable D = X-Y, what is the probability distribution of D?

Conditional Probability

** The probability of **A** given **B**

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
$$P(B) \neq 0$$

The "Size" analogy

Credit: Prof. Jeremy Orloff & Jonathan Bloom

Conditional probability distribution of random variables

** The conditional probability distribution of X given Y is

$$P(x|y) = \frac{P(x,y)}{P(y)} \qquad P(y) \neq 0$$

Conditional probability distribution of random variables

** The conditional probability distribution of X given Y is D(x,y)

$$P(x|y) = \frac{P(x,y)}{P(y)} \quad P(y) \neq 0$$

** The joint probability distribution of two random variables **X** and **Y** is

$$P(\{X=x\} \cap \{Y=y\})$$

$$\sum P(x|y) = 1$$

Get the marginal from joint distri.

** We can recover the individual probability distributions from the joint probability distribution

$$P(x) = \sum_{y} P(x, y)$$

$$P(y) = \sum P(x, y)$$

Joint probabilities sum to 1

** The sum of the joint probability distribution

$$\sum_{y} \sum_{x} P(x, y) = 1$$

Joint Probability Example

** Tossing a coin twice, we define random variable X and Y for each toss.

$$X(\omega) = \begin{cases} 1 & outcome \ of \ \omega \ is \ head \\ 0 & outcome \ of \ \omega \ is \ tail \end{cases}$$

$$Y(\omega) = \begin{cases} 1 & outcome \ of \ \omega \ is \ head \\ 0 & outcome \ of \ \omega \ is \ tail \end{cases}$$

Joint probability distribution example

Joint Probability Example

Now we define Sum S = X + Y, Difference D = X - Y. S takes on values $\{0,1,2\}$ and D takes on values $\{-1, 0, 1\}$

$$X(\omega) = \begin{cases} 1 & outcome \ of \ \omega \ is \ head \\ 0 & outcome \ of \ \omega \ is \ tail \end{cases}$$

$$Y(\omega) = \begin{cases} 1 & outcome \ of \ \omega \ is \ head \\ 0 & outcome \ of \ \omega \ is \ tail \end{cases}$$

Joint Probability Example

Suppose coin is fair, and the tosses are independent

Joint probability distribution example

Independence of random variables

** Random variable X and Y are independent if

$$P(x,y) = P(x)P(y)$$
 for all x and y

- ** In the previous coin toss example
 - ** Are X and Y independent?
 - ** Are S and D independent?

Joint probability distribution example

P(x, y)	0	1	X	P(y)
<i>y</i> 0	$\frac{1}{4}$	$\frac{1}{4}$		$\frac{1}{2}$
1	$\frac{1}{4}$	$\frac{1}{4}$		$\frac{1}{2}$
			-	
P(x)	$\frac{1}{2}$	$\frac{1}{2}$		

Joint probability distribution example

Conditional probability distribution example

$$P(s|d) = \frac{P(s,d)}{P(d)}$$

Bayes rule for random variable

** Bayes rule for events generalizes to random variables

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Total Probability

Conditional probability distribution example

$$P(D = -1|S = 1) = \frac{P(S = 1|D = -1)P(D = -1)}{P(S = 1)} = \frac{1 \times \frac{1}{4}}{\frac{1}{2}}$$

Additional References

- ** Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

