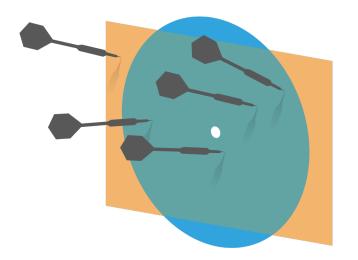
Probability and Statistics for Computer Science



"I have now used each of the terms mean, variance, covariance and standard deviation in two slightly different ways." ---Prof. Forsythe

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 2.18.2021

Last time

Random Variable

Probability distribution

Cumulative distribution

P(X=1)

stribution
istribution
$$P(X = x)$$
?

Objectives

Random Variable

- * Conditional & Joint Probability
- # Expected value
- **** Variance & covariance**

Conditional probability distribution of random variables

* The conditional probability distribution of X given Y is $P(x|y) = \frac{P(x,y)}{P(y)}$ $P(y) \neq 0$ $P(x, y) = P(X = x \cap T = y)$ P(y) = P(Y = y)

P(x|y) = P(X = x|Y = y)

Conditional probability distribution of random variables

- * The conditional probability distribution of X given Y is $P(x|y) = \frac{P(x,y)}{P(y)} P(y) \neq 0$
- ** The joint probability distribution of two random variables **X** and **Y** is $P(\{X = x\} \cap \{Y = y\})$

$$\sum P(x|y) = 1$$

Get the marginal from joint distri.

* We can recover the individual probability distributions from the joint probability distribution $P(x) = \sum_{y} P(x, y) \stackrel{\text{RHS}}{=} \sum_{y} P(y|x) \stackrel{\text{resp}}{=} p(x) \cdot \sum_{y} P(y|x)$

$$P(y) = \sum P(x, y)$$

 ${\mathcal X}$

Joint probabilities sum to 1

* The sum of the joint probability distribution

$$\sum_{y} \sum_{x} P(x, y) = 1$$

$$LHS = \sum_{y} P(y)$$

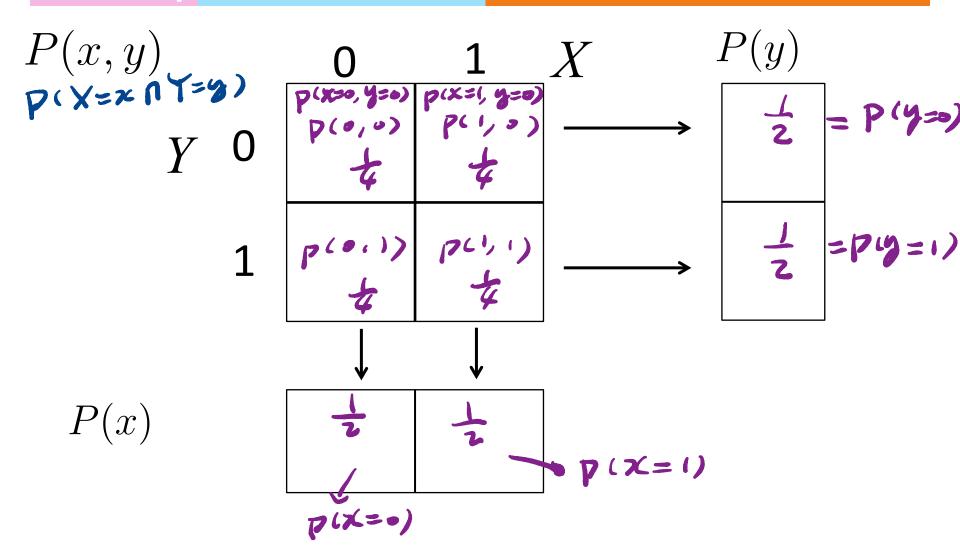
$$= 1$$

Joint Probability Example

* Tossing a coin twice, we define random variable X and Y for each P(x)toss.

$X(\omega) = \begin{cases} 1 & outcome \ of \ \omega \ is \ head \\ 0 & outcome \ of \ \omega \ is \ tail \end{cases}$

 $Y(\omega) = \begin{cases} 1 & outcome \ of \ \omega \ is \ head \\ 0 & outcome \ of \ \omega \ is \ tail \end{cases}$



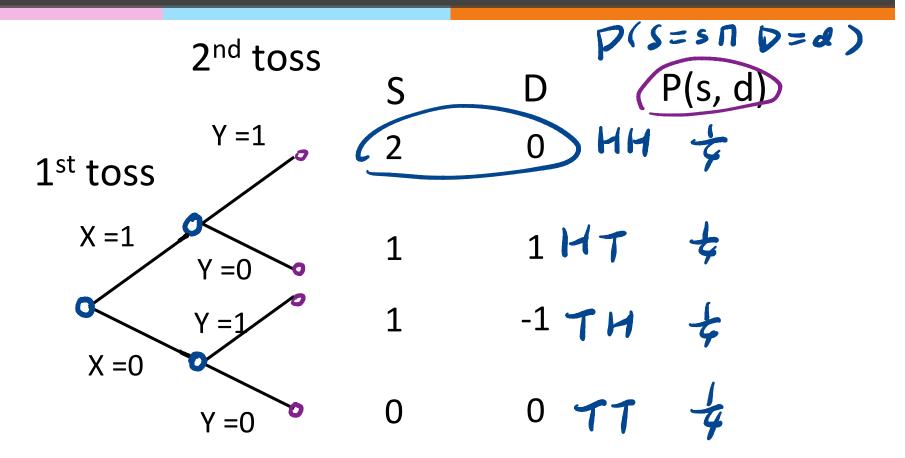
Joint Probability Example

Now we define Sum S = X + Y, Difference D = X - Y. S takes on values {0,1,2} and D takes on values {-1, 0, 1}

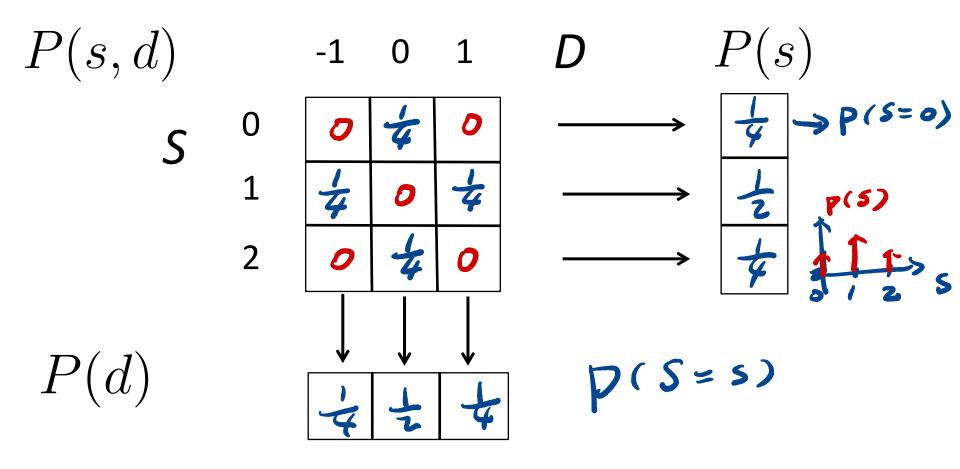
 $X(\omega) = \begin{cases} 1 & outcome \ of \ \omega \ is \ head \\ 0 & outcome \ of \ \omega \ is \ tail \end{cases}$

 $Y(\omega) = \begin{cases} 1 & outcome \ of \ \omega \ is \ head \\ 0 & outcome \ of \ \omega \ is \ tail \end{cases}$

Joint Probability Example



Suppose coin is fair, and the tosses are independent

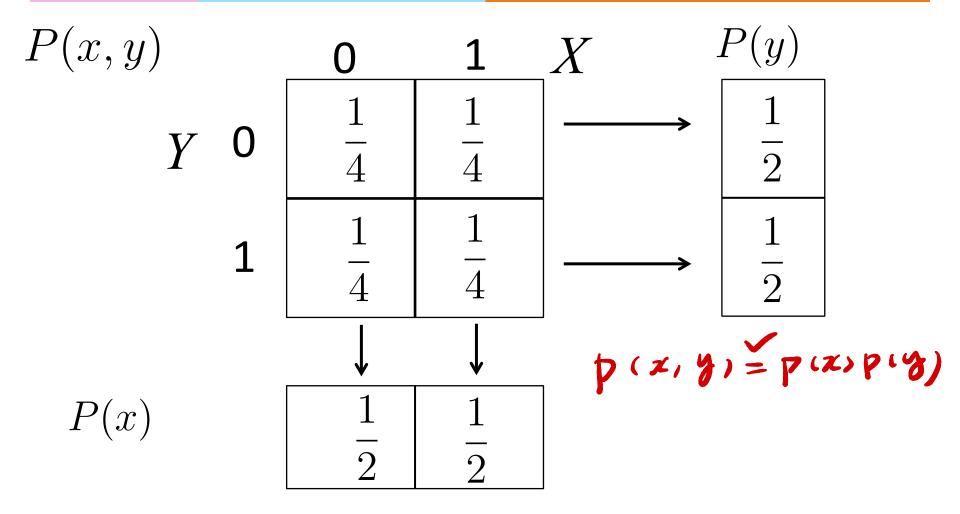


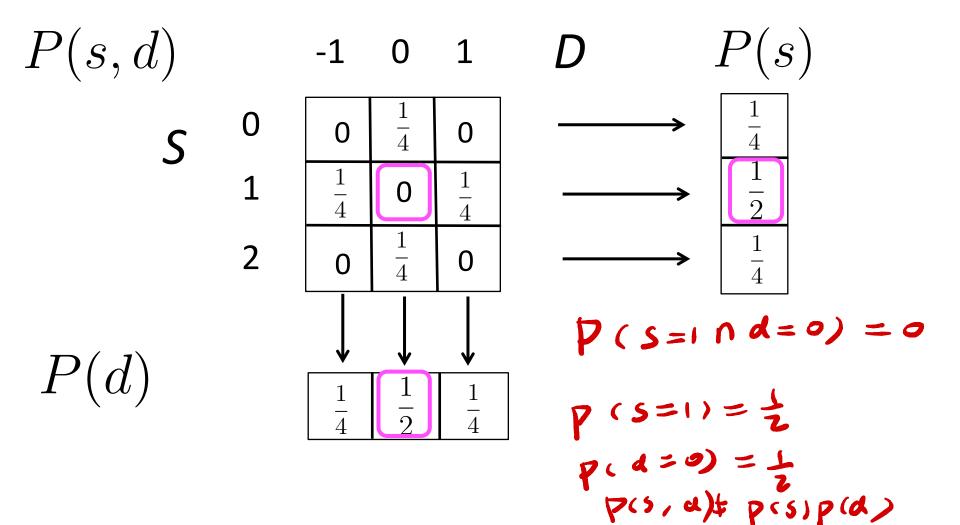
Independence of random variables

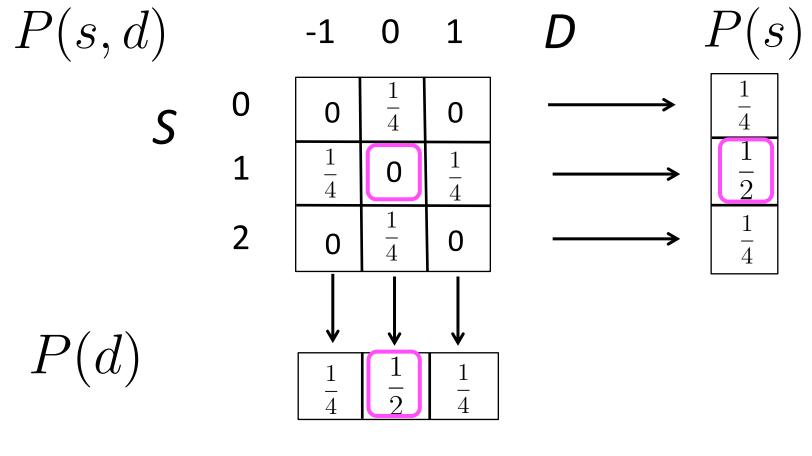
Random variable X and Y are independent if

$$P(x,y) = P(x)P(y)$$
 for all x and y

- * In the previous coin toss example
 - ** Are X and Y independent?
 - * Are **S** and **D** independent?







 $P(S = 1, D = 0) \neq P(S = 1)P(D = 0)$

After class

Conditional probability distribution example

D(a, d)

$$P(s|d) = \frac{I(s, a)}{P(d)}$$

$$-1 \quad 0 \quad 1 \quad D$$

$$S \quad 0 \quad 0 \quad \frac{1}{2} \quad 0 \quad 1$$

$$S \quad 1 \quad 0 \quad 1 \quad 0 \quad 1$$

$$2 \quad 0 \quad \frac{1}{2} \quad 0 \quad 1$$

$$P(S=i|D=-i) = \frac{P(S=i, D=-i)}{P(D=-i)} = \frac{\frac{1}{4}}{\frac{1}{4}} = i$$

r class

Bayes rule for random variable

Bayes rule for events generalizes to random variables $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$ $P(x|y) = \frac{P(y|x)P(x)}{P(y)}$ $= \frac{P(y|x)P(x)}{\sum_{x} P(y|x)P(x)} \checkmark$ ✓ Total Probability

After class

Conditional probability distribution example

7\

 \mathbf{n}

$$P(s|d) = \frac{P(s,d)}{P(d)} -1 \quad 0 \quad 1 \quad D$$

$$S \quad 1 \quad 0 \quad \frac{1}{2} \quad 0$$

$$S \quad 1 \quad 0 \quad 1$$

$$2 \quad 0 \quad \frac{1}{2} \quad 0$$

$$P(D = -1|S = 1) = \frac{P(S = 1|D = -1)P(D = -1)}{P(S = 1)} = \frac{1 \times \frac{1}{4}}{\frac{1}{2}}$$

Three important facts of Random variables

Random variables have probability functions

Random variables can be conditioned on events or other random variables

Random variables have averages

Expected value

* The **expected value** (or **expectation**) of a random variable X is

 $E[X] = \sum x P(x)$

 $x = \sum_{i=1}^{x} P(x) = i$ The expected value is a weighted sum of all the values X can take

Expected value

* The **expected value** of a random variable X is <= 1

$$E[X] = \sum_{x} x P(x)$$

$$E[x] = 0.5 if$$

$$F(x) = 1$$

$$F(x) = 1$$

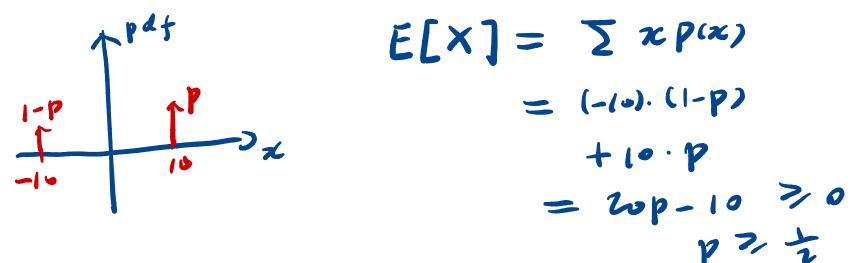
$$F(x) = 1$$

$$F(x) = 1$$

The expected value is a weighted sum of all the values X can take

Expected value: profit

- ** A company has a project that has p probability of earning 10 million and 1-p probability of losing 10 million.
- * Let X be the return of the project.



Atter class	Cookie	chocolate J J & zeach	
A) random out	draw 1 of 4	Expected u	
B)random	draw (<u>mice</u> when you g	with replace the two are et the prize.	rhe same,

Expected value?

Linearity of Expectation

For random variables X and Y and constants k,c

** Scaling property E[kX] = kE[X]

Additivity

E[X + Y] = E[X] + E[Y]** And E[kX + c] = kE[X] + c

Linearity of Expectation

Proof of the additive property E[X+Y] = E[X] + E[Y]S = X + Y $E[X+Y] = E(S) = \sum_{i} SP(S)$ $= \sum S \sum P(x,y)$ $\{S = x_{i}y\} \{S = x_{i}y\}$ P(s) = P(S=s)Nore. P(S=S)=0 $= \Sigma \Sigma (x+y) P(x,y)$ if x+y=s x y

Proof conti.

 $E[X+Y] = \sum_{x \in Y} \sum_{y \in Y} p(x,y)$ $E[ax(+(+z)=) = \sum_{x,y} \sum_{x,y} \sum_{x,y} p(x,y) + \sum_{x,y} \sum_{x,y} p(x,y)$ $aE[x](+E[x]) = \sum_{x,y} \sum_{x,y} \sum_{x,y} p(x,y)$ $= \sum_{x} \sum_{y} P(x,y) + \sum_{x} \sum_{y} P(x,y)$ $=\sum_{x} x \cdot P(x) + \sum_{y} \sum_{x} P(x, y)$ $= E[X] + \sum_{n} y P(y)$ = E[X] + E[Y]

Q. What's the value?

* What is E[E[X]+]? A. E[X]+1 B. 1 C. 0 E(E(X+1) $= E \left[E[x] + E() \right]$ = E(x)+1

Expected value of a function of X

If f is a function of a random
variable X, then Y = f(X) is a
random variable too

* The expected value of Y = f(X) is E[f(X)] = ? $E[Y] = \Sigma \mathcal{F}(\mathcal{Y})$

Expected value of a function of X

If f is a function of a random variable X, then Y = f(X) is a random variable too

** The expected value of Y = f(X) is $E[Y] = E[f(X)] = \sum f(x)P(x)$

The exchang of variable theorem

 $E[f(x)] = E[Y] = \Sigma JP(J)$ if 1x1 al g] is dijection P(g)=P(x) $= \Sigma y P(x)$ $= \Sigma f(x) P(x)$ if several x in {xs} a one y, value $E[Y] = \Sigma \mathcal{Y} P(x) + \mathcal{Y} P(\mathcal{Y})$ 761 $= \sum_{\substack{y \in 1}} y p(x) + y_s \sum_{\substack{x \in \{x_s\}}} p(x)$ $= \Sigma \mathcal{Y} P(\mathcal{X}) = \Sigma f(\mathcal{X}) P(\mathcal{X})$

Expected time of cat

* A cat moves with random constant speed V, either 5mile/hr or 20mile/hr 7E[fw] with equal probability, what's the expected time for it to travel 50 miles? キモレ E[T] = ? $T = \frac{52}{10} = f(0)$ $E[\frac{S}{S}] = \Sigma f(v) P(v)$ $= \frac{S}{S} \cdot P(v) + \frac{S}{S}$

class

Q: Is this statement true?

If there exists a constant such that $P(X \ge a) = 1$, then $E[X] \ge a$. It is:

A. TrueB. False

Variance and standard deviation

* The variance of a random variable X is

$$var[X] = E[(X - E[X])^2] = E[f^{X}]$$

* The standard deviation of a random variable X is

$$std[X] = \sqrt{var[X]}$$

Properties of variance

% For random variable X and constant k

$var[X] \ge 0$

$$var[kX] = k^2 var[X]$$

Wariance of Random Variable X is defined as:

$$var[X] = E[(X - E[X])^2]$$

It's the same as:

 $var[X] = E[X^2] - E[X]^2$

 $var[X] = E[(X - E[X])^2]$

$$var[X] = E[(X - E[X])^2]$$

$$var[X] = E[(X - \mu)^2] \quad where \ \mu = E[X]$$

$$var[X] = E[(X - E[X])^2]$$

 $var[X] = E[(X - \mu)^2]$ where $\mu \in E[$ $= E[X^2 - 2X\mu + \mu^2]$ $= F[X^2] - E[zX\mu] + E[\mu^2]$ $= E[x^{2}] - 2E[x^{M}] + E[x^{M}]$ $= E[x^{2}] - zE[x] + u^{2} \leftarrow$ $= E[x] - E[x]^2$

Variance: the profit example

* For the profit example, what is the variance of the return? We know E[X] = $E[f(X)] = \sum f(z)P(z)$ 20p-10 Rd + $var[X] = E[X^2] - (E[X])^2$ -10 $= \sum x^{2} p(x) - (wp - 10)^{2}$ $= 10^{2} p + (-(0)^{2} (1-p) - (20)^{2} - (0)^{2}$

Additional References

- * Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

