
ì	Probability	and	Statistics	
for	Computer	Science		

“I	have	now	used	each	of	the	
terms	mean,	variance,	
covariance	and	standard	
devia5on	in	two	slightly	
different	ways.”	---Prof.	
Forsythe		
	

Hongye	Liu,	Teaching	Assistant	Prof,	CS361,	UIUC,	2.18.2021	

Credit:	wikipedia	



Last	time	
� Random	Variable	

� Probability	distribu5on	

� Cumula5ve	distribu5on	
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Objectives	

� Random	Variable		
� Condi&onal	&	Joint	Probability		
� Expected	value	
� Variance	&	covariance	



Conditional	probability	distribution	
of	random	variables	
�  The	condi5onal	probability	distribu5on	
of	X given Y is	

	 P (x|y) =
P (x, y)

P (y)
P (y) ̸= 0
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Conditional	probability	distribution	
of	random	variables	
�  The	condi5onal	probability	distribu5on	
of	X given Y is	

	

�  The	joint	probability	distribu5on	of	two	
random	variables	X	and	Y	is		

						

P (x|y) =
P (x, y)

P (y)
P (y) ̸= 0

P ({X = x} ∩ {Y = y})
∑

x

P (x|y) = 1

for all 7C



Get	the	marginal	from	joint	distri.	

� We	can	recover	the	individual	
probability	distribu5ons	from	the	joint	
probability	distribu5on	
P (x) =

∑

y

P (x, y)

P (y) =
∑

x

P (x, y)
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Joint	probabilities	sum	to	1	

� The	sum	of	the	joint	probability	
distribu5on		

∑

y

∑

x

P (x, y) = 1

LHS =-2g Ply )

= I



Joint	Probability	Example	

� Tossing	a	coin	twice,	we	define	
random	variable	X and Y for	each	
toss. 

	

	

X(ω) =

{

1 outcome of ω is head
0 outcome of ω is tail

Y (ω) =

{

1 outcome of ω is head
0 outcome of ω is tail
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Joint	probability	distribution	
example	
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Joint	Probability	Example	

Now	we	define Sum	S	=	X	+	Y, Difference	
D	=	X	–	Y. S takes	on	values	{0,1,2}	and	D	
takes	on	values	{-1,	0,	1}	

	

	

X(ω) =

{

1 outcome of ω is head
0 outcome of ω is tail

Y (ω) =

{

1 outcome of ω is head
0 outcome of ω is tail



Joint	Probability	Example	

X	=1	

X	=0	

Y	=1	

Y	=0	
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Y	=0	
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P(s,	d)	

1st	toss	

2nd	toss	

Suppose	coin	is	fair,	and	the	tosses	are	independent	
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Joint	probability	distribution	
example	
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Independence	of	random	variables	

� Random	variable	X and Y are	
independent	if	

�  In	the	previous	coin	toss	example	
� Are	X	and	Y	independent?	
� Are	S	and	D	independent?	
	

P (x, y) = P (x)P (y) for all x and y



Joint	probability	distribution	
example	
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Joint	probability	distribution	
example	
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Joint	probability	distribution	
example	
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Conditional	probability	distribution	
example	
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Bayes	rule	for	random	variable	

� Bayes	rule	for	events	generalizes	to	
random	variables	

P (A|B) =
P (B|A)P (A)

P (B)

P (x|y) =
P (y|x)P (x)

P (y)

=
P (y|x)P (x)

∑
x
P (y|x)P (x)

Total	Probability	

After class



Conditional	probability	distribution	
example	
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Three	important	facts	of	Random	
variables	

� Random	variables	have	
probability	func1ons	

� Random	variables	can	be	
condi1oned	on	events	or	other	
random	variables	

� Random	variables	have	averages	



Expected	value	

� The	expected	value	(or	expecta1on)	
of	a	random	variable	X	is	

The	expected	value	is	a	weighted	sum	
of	all	the	values	X	can	take	

	

	

	

E[X] =
∑

x

xP (x)
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Expected	value	

� The	expected	value	of	a	random	
variable	X	is	

The	expected	value	is	a	weighted	sum	
of	all	the	values	X	can	take	

	

	

	

E[X] =
∑

x

xP (x)
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Expected	value:	profit		

�  A	company	has	a	project	that	has	p	
probability	of	earning	10	million	and	1-p	
probability	of	losing	10	million.	

�  Let	X	be	the	return	of	the	project.	
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Linearity	of	Expectation	

� For	random	variables	X	and	Y	
and	constants	k,c	
� Scaling	property	
	
� Addi5vity	

� And		

	

	

E[X + Y ] = E[X] + E[Y ]

E[kX] = kE[X]

E[kX + c] = kE[X] + c



Linearity	of	Expectation	

� Proof	of	the	addi5ve	property	

	

	

E[X + Y ] = E[X] + E[Y ] 5- XTY
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Proof Conti .
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Q.	What’s	the	value?	

� What	is	E[E[X]+1]?	

					A.	E[X]+1							B.	1								C.	0																																										
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Expected	value	of	a	function	of	X 

� If	f	is	a	func5on	of	a	random	
variable	X	,	then	Y	=	f	(X)	is	a	
random	variable	too	

� The	expected	value	of	Y	=	f	(X)	is	
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Expected	value	of	a	function	of	X 

� If	f	is	a	func5on	of	a	random	
variable	X	,	then	Y	=	f	(X)	is	a	
random	variable	too	

� The	expected	value	of	Y	=	f	(X)	is	

	
	

	

	

E[Y ] = E[f(X)] =
∑

x

f(x)P (x)

-



The exchange of variable theorem
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Expected	time	of	cat	

�  A	cat	moves	with	random	constant	
speed	V,	either	5mile/hr	or	20mile/hr	
with	equal	probability,	what’s	the	
expected	5me	for	it	to	travel	50	miles?	
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Q:	Is	this	statement	true?		

If	there	exists	a	constant	such	that	
P(X	≥	a)	=		1,	then	E[X]	≥	a	.	It	is:	
	
A.  True	
B.  False	

after class



Variance	and	standard	deviation 

� The	variance	of	a	random	
variable	X	is	

� The	standard	devia5on	of	a	
random	variable	X	is	
	

	

	

std[X] =
√

var[X]

var[X] = E[(X − E[X])2]

y
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Properties	of	variance 

� For	random	variable	X	and	
constant	k	
	

	

	

var[kX] = k
2
var[X]

var[X] ≥ 0



A	neater	expression	for	variance 

	

	

var[X] = E[X2]− E[X]2

var[X] = E[(X − E[X])2]

� Variance	of	Random	Variable	X	is	
defined	as:		

� It’s	the	same	as:	



A	neater	expression	for	variance 

	

	

var[X] = E[(X − E[X])2]



A	neater	expression	for	variance 

	

	

var[X] = E[(X − µ)2] where µ = E[X]

var[X] = E[(X − E[X])2]



A	neater	expression	for	variance 

	

	

var[X] = E[(X − µ)2] where µ = E[X]

= E[X2
− 2Xµ+ µ2]

var[X] = E[(X − E[X])2]

O
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Variance:	the	profit	example	

�  For	the	profit	example,	what	is	the	
variance	of	the	return?	We	know	E[X]=	
20p-10	

var[X] = E[X2]− (E[X])2

= (102p+ (−10)2(1− p))− (20p− 10)2

= 100− (400p2 − 400p+ 100)
= 400p(1− p)
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Additional	References	

�  Charles	M.	Grinstead	and	J.	Laurie	Snell	
"Introduc5on	to	Probability”		

� Morris	H.	Degroot	and	Mark	J.	Schervish	
"Probability	and	Sta5s5cs”	



See	you	next	time	

See 
You! 


