Probability and Statistics 7 for Computer Science

"I have now used each of the terms mean, variance, covariance and standard deviation in two slightly different ways." ---Prof. Forsythe

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 2.18.2021

Last time

 Kandom Variable

**** Probability distribution**

* Cumulative distribution

$$
P(X=1)
$$

Objectives

Kandom Variable

- $*$ Conditional & Joint Probability
- *Expected value*
- *Variance & covariance*

Conditional probability distribution of random variables

EXECTE: The conditional probability distribution of *X given Y* is $P(x|y) = \frac{P(x, y)}{P(x)}$ $P(y)$ $P(y) \neq 0$ $p(X=x|Y=y)$
 $p(X=x|Y=y)$ $\boldsymbol{\mathit{\hat{T}}}$ $P(x, y) = P(X=x \cap Y=y)$ $P(y) = P(Y=y)$ $p(x|y) = P(X=x|Y=y)$

Conditional probability distribution of random variables

- $*$ The conditional probability distribution of *X given Y* is $P(x|y) = \frac{P(x, y)}{P(y)}$ $\frac{P(y)}{P(y)}$ $\frac{P(y)}{f}$ for all ∞ for all $\boldsymbol{\kappa}$
- $*$ The joint probability distribution of two random variables *X* and *Y* is $P({X = x} \cap {Y = y})$

$$
\sum P(x|y) = 1
$$

Get the marginal from joint distri.

 $*$ We can recover the individual probability distributions from the joint probability distribution $P(x) = \sum$ \hat{y} $P(x, y)$ $RHS = \sum p(Y|X) P(X)$ $=\frac{2}{r} \frac{1}{r} \frac{1}{r^{2}}$

$$
P(y) = \sum P(x, y)
$$

 \boldsymbol{x}

Joint probabilities sum to 1

Kota Starbor Example 10 Fearth Starbor Find Starbor Walley Starbor S distribution

$$
\sum_{y} \sum_{x} P(x, y) = 1
$$

LHS = \sum_{y} P(y)
= I

Joint Probability Example

KET Tossing a coin twice, we define random variable *X and Y* for each, $P(x)$ toss. fair A t t a $\overline{}$

$X(\omega) = \begin{cases} 1 & outcome\ of\ \omega\ is\ head \end{cases}$ 0 outcome of ω is tail

 $Y(\omega) = \begin{cases} 1 & outcome\ of\ \omega\ is\ head \ 0 & outcome\ of\ \omega\ is\ head \end{cases}$ 0 outcome of ω is tail

Joint Probability Example

Now we define Sum $S = X + Y$, Difference $D = X - Y$. *S* takes on values $\{0,1,2\}$ and D takes on values $\{-1, 0, 1\}$

$$
X(\omega) = \begin{cases} 1 & \text{outcome of } \omega \text{ is head} \\ 0 & \text{outcome of } \omega \text{ is tail} \end{cases}
$$

 $Y(\omega) = \begin{cases} 1 & outcome\ of\ \omega\ is\ head \end{cases}$ 0 outcome of ω is tail

Joint Probability Example

Suppose coin is fair, and the tosses are independent

Independence of random variables

 Random variable *X and Y* are independent if

$$
P(x, y) = P(x)P(y) \text{ for all } x \text{ and } y
$$

- $*$ In the previous coin toss example **EXARE** *X* and *Y* independent?
	- **EXARE S** and D independent?

0 1 2 1 0 -1 0 1 D *S* 1 $\begin{array}{c|c|c|c} \textbf{0} & \frac{1}{4} & \textbf{0} \end{array}$ 1 4 1 $0 \mid \frac{1}{4} \mid 0$ 1 4 Ω 1 $\frac{1}{4}$ 1 4 1 \mathcal{D}_{α} $P(s, d)$ -1 0 1 D $P(s)$ $P(d)$ $\frac{1}{4}$ 1 4 1 $\overline{2}$ $P(s=1 n d= 0) = 0$ P (s=1) = $\frac{1}{2}$ $P(A=0) = \frac{1}{2}$
P(s, a) = $\frac{1}{2}$ p(s) p(d)

 $P(S = 1, D = 0) \neq P(S = 1)P(D = 0)$

After class

Conditional probability distribution example

$$
P(s|d) = \frac{P(s,d)}{P(d)}
$$

After class

Bayes rule for random variable

$*$ Bayes rule for events generalizes to random variables $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$ $\overline{P(B)}$ $P(x|y) = \frac{P(y|x)P(x)}{P(y)}$ $P(y)$ $P(y|x)P(x)$

 $\sum_{x} P(y|x)P(x)$

=

Total Probability

After class

Conditional probability distribution example

$$
P(s|d) = \frac{P(s, d)}{P(d)} \qquad \qquad \text{-1} \qquad 0 \qquad 1 \qquad D
$$

$$
\mathcal{S} \qquad \qquad \mathcal{S} \qquad \q
$$

$$
P(D = -1|S = 1) = \frac{P(S = 1|D = -1)P(D = -1)}{P(S = 1)} = \frac{1 \times \frac{1}{4}}{\frac{1}{2}}
$$

Three important facts of Random variables

Kandom variables have probability functions

$*$ Random variables can be **conditioned** on events or other random variables

Kandom variables have averages

Expected value

EXECUTE: The expected value (or expectation) of a random variable X is

The expected value is a weighted sum of all the values X can take

 $E[X] = \sum xP(x)$

Expected value

Kose The expected value of a random variable X is

 $E[X] = \sum x P(x)$ $\Sigma P^{(\chi)=1}$ \overline{x} \mathbf{C}

The expected value is a weighted sum of all the values X can take

Expected value: profit

- $*$ A company has a project that has p probability of earning 10 million and 1-p probability of losing 10 million.
- $*$ Let X be the return of the project.

Expected value ?

Linearity of Expectation

Example 18 For random variables X and Y and constants k,c

Komark Scaling property $E[kX] = kE[X]$

 $*$ Additivity

 $*$ And $E[kX + c] = kE[X] + c$ $E[X + Y] = E[X] + E[Y]$

Linearity of Expectation

[‰] Proof of the additive property $E[X + Y] = E[X] + E[Y]$ $S = X + Y$ $E[X+Y] = E(S) = \sum_{s} s P(s)$ $=$ $\sum_{\{s=x+y\}}$ $\sum_{\{s=x+y\}}$ $P(s) = P(S=s)$ Note. $P(S=5)=0$ $=$ $\Sigma(\mathbf{x+y})P(\mathbf{x}, \mathbf{y})$ $if x+y=s$

Proof conti.

 $E[X+Y] = \sum_{x} \sum_{y} (x+y)P(x,y)$ $E[x]^{2}F^{2} = \sum_{x} \sum_{y} x P(x,y) + \sum_{x} \sum_{y} y P(x,y)$
a $E[x]^{x}F^{2}F^{2} = \sum_{x} \sum_{y} x P(x,y) + \sum_{x} \sum_{y} y P(x,y)$ $=$ $\sum_{x} x \sum_{y} P(x, y) + \sum_{y} \sum_{x} y P(x, y)$ = $\Sigma x \cdot P(x) + \Sigma y \Sigma P(x, y)$ = $E[X] + \sum_{u} y P(y)$ $= E[X] + E[Y]$

Q. What's the value?

What is $E[\mathbf{E}[X]+D]$ **?** $[A] E[X]+1$ **B.1** $C.0$ $E[E(X|t)]$ $E E [E[x]] + E[1]$ $= E[X]+1$

Expected value of a function of X

 $\frac{1}{2}$ If **f** is a function of a random variable X , then $Y = f(X)$ is a random variable too) didnot
 $Y = f(X)$

 \mathscr{F} The expected value of $Y = f(X)$ is $E[f(X)] = ?$ $E[Y] =$ }
}
} $y P(y)$

Expected value of a function of X

$\frac{1}{2}$ If *f* is a function of a random variable X, then $Y = f(X)$ is a random variable too

 \mathscr{F} The expected value of $Y = f(X)$ is $E[Y] = E[f(X)] = \sum f(x)P(x)$ value of a function of X
function of a random
external is a variable too
pected value of $Y = f(X)$ is
 $E[f(X)] = \sum_x f(x)P(x)$

The exchang of variable theorem

 $E[f(x)] = E[Y] = \sum Y P(Y)$ if $\{x\}$ of $y\}$ is bijection $P(y) = P(x)$ $= 59P(x)$ $= \sum f(x) P(x)$ if several x in $\{x_{s}\}$ \rightarrow one y_{s} value $E[Y] = \sum_{i} A_i P(x) + A_i P(y)$ 961 = $\sum_{y \in I} y p(x) + y_s \sum_{x \in \{x, y\}} (x)$ $= 2 \gamma P(x) = 2 \gamma(x) P(x)$

Expected time of cat

* A cat moves with random constant speed V, either 5mile/hr or 20mile/hr #Elfw] with equal probability, what's the expected time for it to travel 50 miles? $X = \frac{1}{2}$ $E[T] = ?$ $T = \frac{50}{16} = f(v)$ $EL\frac{59}{v'} = \frac{\sum f(v) P(v)}{\sum_{i=1}^{9} P(v)}$

class

Q: Is this statement true?

If there exists a constant such that $P(X \ge a) = 1$, then $E[X] \ge a$. It is:

A. True B. False

Variance and standard deviation

**** The variance of a random** variable X is

$$
var[X] = E[(\overline{(X - E[X])^2}] = E[fX]
$$

Keta Standard deviation of a random variable X is

$$
std[X] = \sqrt{var[X]}
$$

Properties of variance

$*$ For random variable X and constant k

$var[X] \geq 0$

$$
var[kX] = k^2 var[X]
$$

Wariance of Random Variable X is defined as:

$$
var[X] = E[(X - E[X])^2]
$$

 $*$ It's the same as:

 $var[X] = E[X^2] - E[X]^2$

$$
var[X] = E[(X - E[X])^2]
$$

$$
var[X] = E[(X - E[X])^2]
$$

$$
var[X] = E[(X - \mu)^2] \quad where \ \mu = E[X]
$$

$$
var[X] = E[(X - E[X])^2]
$$

 $var[X] = E[(X - \mu)^2]$ where $\mu \in E[X]$ $= E[X^2 - 2X\mu + \mu^2]$ $= F[x^2] - E[z \times u] + E[u^2]$ = $E[x^2] - 2E[x^2] + E[x^2]$ $= E[X^2] - 2E[X] + 12$ $= E[X^2] - E[X]^2$

Variance: the profit example

 $*$ For the profit example, what is the variance of the return? We know E[X]= 20p-10 $var[X] = E[X^2] - (E[X])^2$ $=$ (1022) $-\frac{1}{2}x^2p(x) - (w^2 - 10)^2$ $= 2 - 100$ $=$ 10^7 $E[f(X)] = \sum_{x} f(x)P(x)$ x^2 is the contract of I p p $\begin{array}{c|c|c}\n & \text{if } & \text{$ lo lo = $E[X^2] - (E[X])^2$
= $\sum_{\mathbf{x}} x^2 p(x) - (w p - w)$ co) ? $\overline{\mathbf{x}}$ $=\int_{0}^{2} p f(x) dx$
= $\int_{0}^{2} p f(x) dx$

Additional References

- **KET Charles M. Grinstead and J. Laurie Snell** "Introduction to Probability"
- **KERETHER Morris H. Degroot and Mark J. Schervish** "Probability and Statistics"

See you next time

See You!

