

Credit: wikipedia

"I have now used each of the terms mean, variance, covariance and standard deviation in two slightly different ways." --- Prof. Forsythe

#### Objectives

- \*\* Random Variable
  - **\*\*** Joint Probability
  - \*\* Expected value
  - \* Variance & covariance

## Conditional probability distribution of random variables

\*\* The conditional probability distribution of X given Y is

$$P(x|y) = \frac{P(x,y)}{P(y)} \qquad P(y) \neq 0$$

## Conditional probability distribution of random variables

\*\* The conditional probability distribution of X given Y is D(x,y)

$$P(x|y) = \frac{P(x,y)}{P(y)} \quad P(y) \neq 0$$

\*\* The joint probability distribution of two random variables **X** and **Y** is

$$P(\{X=x\} \cap \{Y=y\})$$

$$\sum P(x|y) = 1$$

### Get the marginal from joint distri.

\*\* We can recover the individual probability distributions from the joint probability distribution

$$P(x) = \sum_{y} P(x, y)$$

$$P(y) = \sum P(x, y)$$

#### Joint probabilities sum to 1

\*\* The sum of the joint probability distribution

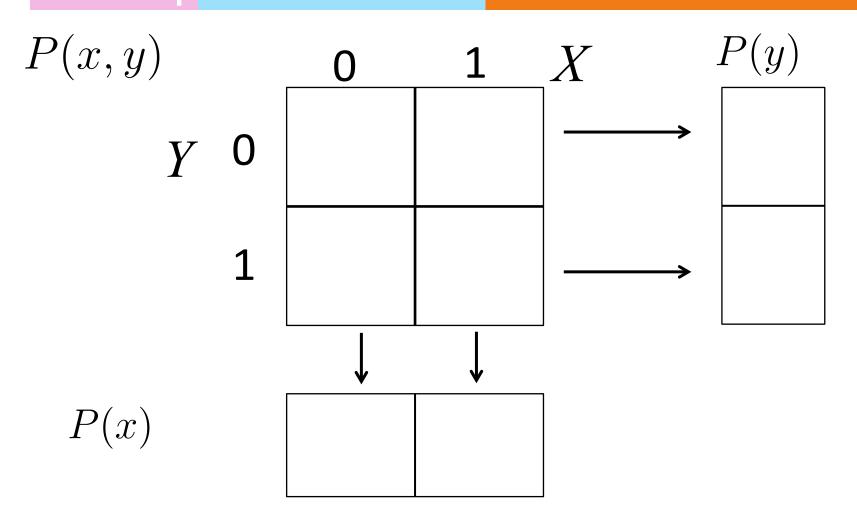
$$\sum_{y} \sum_{x} P(x, y) = 1$$

### Joint Probability Example

\*\* Tossing a coin twice, we define random variable X and Y for each toss.

$$X(\omega) = \begin{cases} 1 & outcome \ of \ \omega \ is \ head \\ 0 & outcome \ of \ \omega \ is \ tail \end{cases}$$

$$Y(\omega) = \begin{cases} 1 & outcome \ of \ \omega \ is \ head \\ 0 & outcome \ of \ \omega \ is \ tail \end{cases}$$



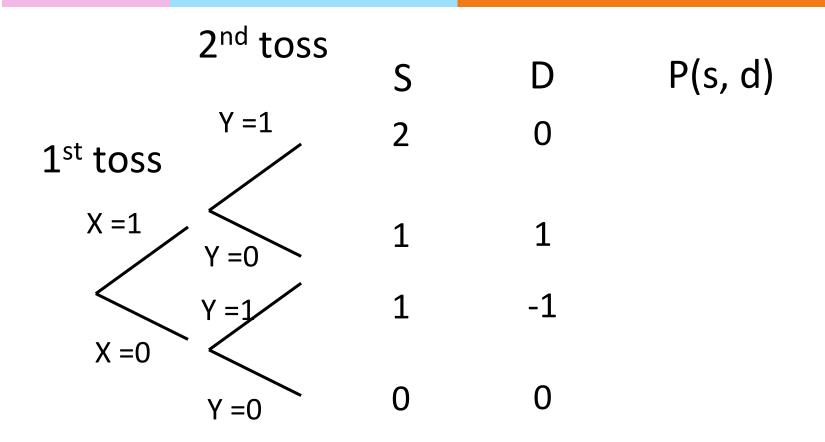
### Joint Probability Example

Now we define Sum S = X + Y, Difference D = X - Y. S takes on values  $\{0,1,2\}$  and D takes on values  $\{-1, 0, 1\}$ 

$$X(\omega) = \begin{cases} 1 & outcome \ of \ \omega \ is \ head \\ 0 & outcome \ of \ \omega \ is \ tail \end{cases}$$

$$Y(\omega) = \begin{cases} 1 & outcome \ of \ \omega \ is \ head \\ 0 & outcome \ of \ \omega \ is \ tail \end{cases}$$

### Joint Probability Example



Suppose coin is fair, and the tosses are independent

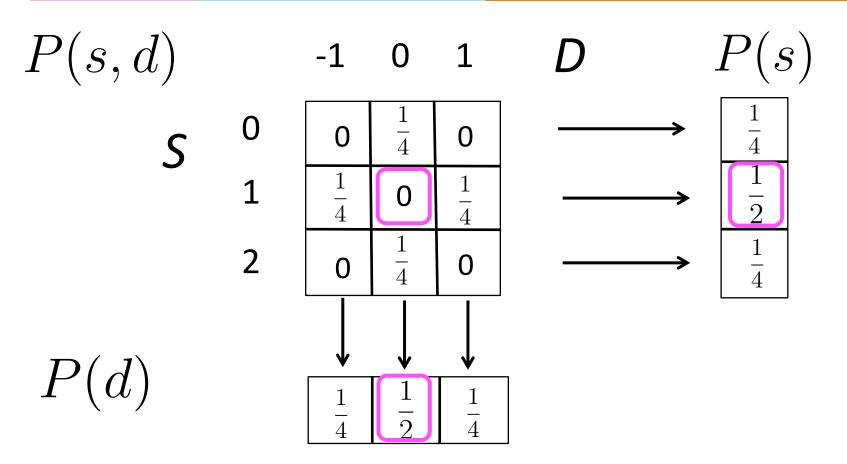
#### Independence of random variables

\*\* Random variable X and Y are independent if

$$P(x,y) = P(x)P(y)$$
 for all x and y

- \*\* In the previous coin toss example
  - \*\* Are X and Y independent?
  - \*\* Are S and D independent?

| P(x, y)    | 0             | 1             | X       | P(y)          |
|------------|---------------|---------------|---------|---------------|
| <i>y</i> 0 | $\frac{1}{4}$ | $\frac{1}{4}$ | <b></b> | $\frac{1}{2}$ |
| 1          | $\frac{1}{4}$ | $\frac{1}{4}$ | <b></b> | $\frac{1}{2}$ |
|            | <b></b>       | <b></b>       | -       |               |
| P(x)       | $\frac{1}{2}$ | $\frac{1}{2}$ |         |               |



$$P(S = 1, D = 0) \neq P(S = 1)P(D = 0)$$

## Conditional probability distribution example

$$P(s|d) = \frac{P(s,d)}{P(d)}$$

### Bayes rule for random variable

\*\* Bayes rule for events generalizes to random variables

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Total Probability

## Conditional probability distribution example

$$P(D = -1|S = 1) = \frac{P(S = 1|D = -1)P(D = -1)}{P(S = 1)} = \frac{1 \times \frac{1}{4}}{\frac{1}{2}}$$

# Three important facts of Random variables

- \*\* Random variables have probability functions
- \*\* Random variables can be conditioned on events or other random variables
- \*\* Random variables have averages

#### Expected value

\*\* The **expected value** (or **expectation**) of a random variable X is

$$E[X] = \sum_{x} x P(x)$$

The expected value is a weighted sum of the values X can take

#### Expected value

\*\* The **expected value** of a random variable X is

$$E[X] = \sum_{x} x P(x)$$

The expected value is a weighted sum of the values X can take

#### Expected value: profit

- \*\* A company has a project that has **p** probability of earning 10 million and **1-p** probability of losing 10 million.
- \*\* Let X be the return of the project.

#### Expected value as mean

\*\* Suppose we have a data set  $\{x_i\}$  of N data points. Let's define a random variable X taking on each of the data points with equal probability 1/N.

$$E[X] = \sum_{i} x_{i} P(x_{i}) = \frac{1}{N} \sum_{i} x_{i} = mean(\{x_{i}\})$$

\*\* The expected value is also called the mean.

#### Linearity of Expectation

- \*\* For random variables X and Y and constants k,c
  - \*\* Scaling property

$$E[kX] = kE[X]$$

**\*\* Additivity** 

$$E[X+Y] = E[X] + E[Y]$$

$$\#$$
 And  $E[kX+c]=kE[X]+c$ 

#### Linearity of Expectation

\*\* Proof of the additive property

$$E[X+Y] = E[X] + E[Y]$$

#### Q. What's the value?

\*\* What is E[E[X]+1]?

A. E[X]+1

B. 1

C. 0

#### Expected value of a function of X

- # If f is a function of a random variable X, then Y = f(X) is a random variable too
- \*\* The expected value of Y = f(X) is

#### Expected value of a function of X

- # If f is a function of a random variable X, then Y = f(X) is a random variable too
- \*\* The expected value of Y = f(X) is

$$E[Y] = E[f(X)] = \sum f(x)P(x)$$

 $\mathcal{X}$ 

#### Expected time of cat

\*\* A cat moves with random constant speed **V**, either 5mile/hr or 20mile/hr with equal probability, what's the expected time for it to travel 50 miles?

#### Q: Is this statement true?

If there exists a constant such that  $P(X \ge a) = 1$ , then  $E[X] \ge a$ . It is:

- A. True
- B. False

#### Variance and standard deviation

\*\* The variance of a random variable X is

$$var[X] = E[(X - E[X])^2]$$

\*\* The standard deviation of a random variable X is

$$std[X] = \sqrt{var[X]}$$

#### Properties of variance

\*\* For random variable X and constant k

$$var[X] \ge 0$$

$$var[kX] = k^2 var[X]$$

\*\* Variance of Random Variable X is defined as:

$$var[X] = E[(X - E[X])^2]$$

# It's the same as:

$$var[X] = E[X^2] - E[X]^2$$

$$var[X] = E[(X - E[X])^2]$$

$$var[X] = E[(X - E[X])^2]$$

$$var[X] = E[(X - \mu)^2]$$
 where  $\mu = E[X]$ 

$$var[X] = E[(X - E[X])^2]$$

$$var[X] = E[(X - \mu)^{2}]$$
 where  $\mu = E[X]$   
=  $E[X^{2} - 2X\mu + \mu^{2}]$ 

## Variance: the profit example

\*\* For the profit example, what is the variance of the return? We know E[X] = 20p-10

$$var[X] = E[X^2] - (E[X])^2$$

#### Motivation for covariance

- Study the relationship between random variables
- \*\* Note that it's the un-normalized correlation
- \*\* Applications include the fire control of radar, communicating in the presence of noise.

#### Covariance

\*\* The **covariance** of random variables X and Y is

$$cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$

**\*\* Note that** 

$$cov(X, X) = E[(X - E[X])^2] = var[X]$$

#### A neater form for covariance

\*\* A neater expression for covariance (similar derivation as for variance)

$$cov(X,Y) = E[XY] - E[X]E[Y]$$

# Correlation coefficient is normalized covariance

\* The correlation coefficient is

$$corr(X, Y) = \frac{cov(X, Y)}{\sigma_X \sigma_Y}$$

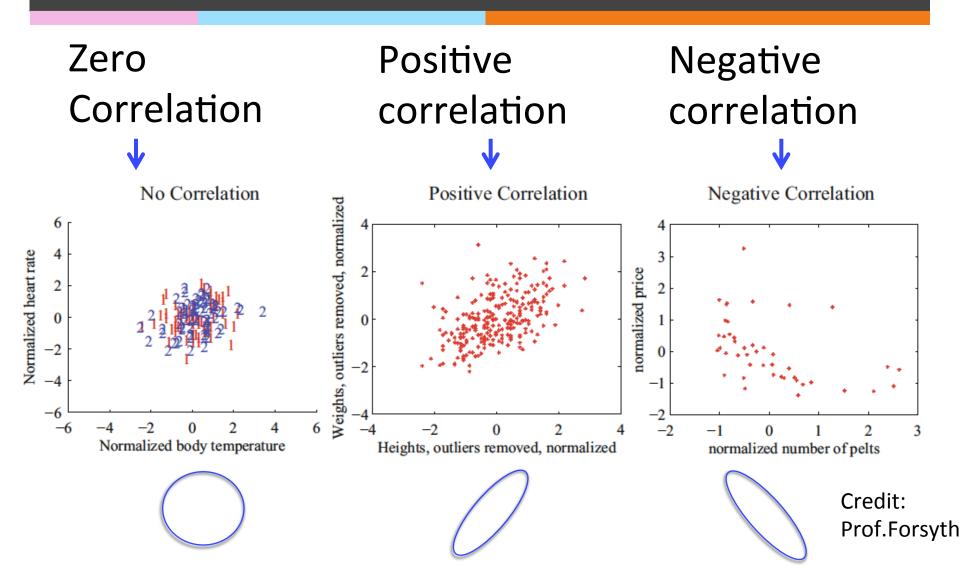
\*\* When X, Y takes on values with equal probability to generate data sets  $\{(x,y)\}$ , the correlation coefficient will be as seen in Chapter 2.

## Correlation coefficient is normalized covariance

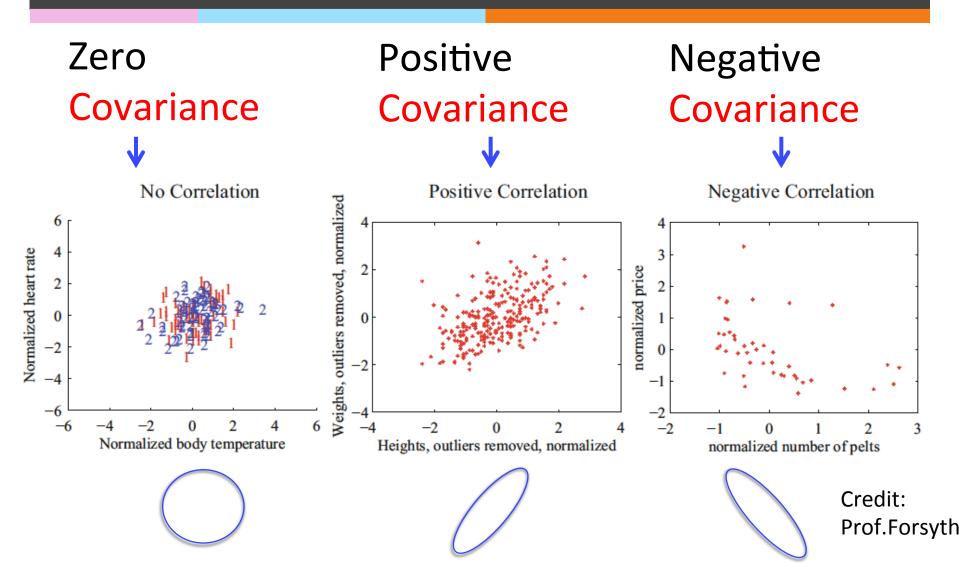
\*\* The correlation coefficient can also be written as:

$$corr(X, Y) = \frac{E[XY] - E[X]E[Y]}{\sigma_X \sigma_Y}$$

## Correlation seen from scatter plots



## Covariance seen from scatter plots

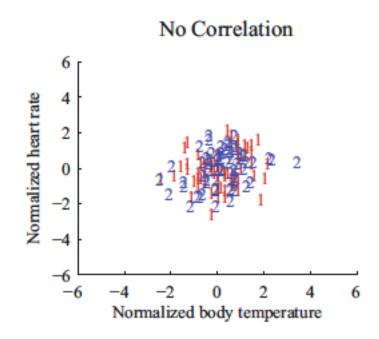


# When correlation coefficient or covariance is zero

- **\*\*** The covariance is 0!
- # That is:

$$E[XY] - E[X]E[Y] = 0$$

$$E[XY] = E[X]E[Y]$$



\*\* This is a necessary property of independence of random variables \* (not equal to independence)

# Variance of the sum of two random variables

$$var[X + Y] = var[X] + var[Y] + 2cov(X, Y)$$

# If events X &Y are independent, then

$$*$$
  $E[XY] = E[X]E[Y]$ 

#### Proof:

$$E[XY] = E[X]E[Y]$$

# These are equivalent! Uncorrelatedness

$$*E[XY] = E[X]E[Y]$$

$$cov(X,Y) = 0$$

$$var[X + Y] = var[X] + var[Y]$$

## Q: What is this expectation?

\*\* We toss two identical coins A & B independently for three times and 4 times respectively, for each head we earn \$1, we define X is the earning from A and Y is the earning from B. What is E(XY)?

A. \$2

B. \$3

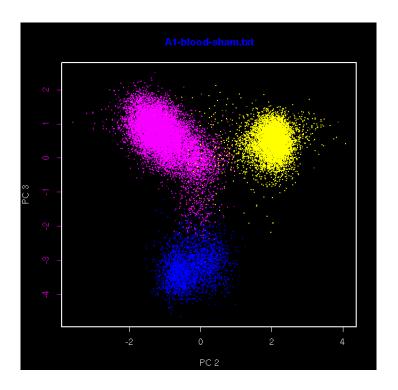
C. \$4

## Uncorrelated vs Independent

\*\* If two random variables are uncorrelated, does this mean they are independent? Investigate the case X takes -1, 0, 1 with equal probability and Y=X<sup>2</sup>.

## Covariance example

It's an underlying concept in principal component analysis in Chapter 10



## Assignments

- # Finish week4 module
- \*\* Next time: Markov and Chebyshev inequality & Weak law of large numbers, Continuous random variable

#### Additional References

- \*\* Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- \*\* Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

#### See you next time

See You!

