
ì	Probability	and	Statistics	
for	Computer	Science		

“The	weak	law	of	large	
numbers	gives	us	a	very	
valuable	way	of	thinking	
about	expecta:ons.”	---Prof.	
Forsythe		
	

Hongye	Liu,	Teaching	Assistant	Prof,	CS361,	UIUC,	02.23.2021	

Credit:	wikipedia	



Last	time	

� Random	Variable		
� Expected	value	
� Variance	&	covariance	ABBATE



Objectives	

� Random	Variable		
� Review		
� Covariance	
� The	weak	law	of	large	numbers	
� Simula=on	&	example	of	airline	
overbooking	



Expected	value	

� The	expected	value	(or	expecta,on)	
of	a	random	variable	X	is	

The	expected	value	is	a	weighted	sum	
of	all	the	values	X	can	take	
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Linearity	of	Expectation	
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Expected	value	of	a	function	of	X 
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Motivation	for	covariance	

� Study	the	rela:onship	between	
random	variables	

� Note	that	it’s	the	un-normalized	
correla:on	

� Applica:ons	include	the	fire	control	
of	radar,	communica:ng	in	the	
presence	of	noise.		 * ML



Covariance	

� The	covariance	of	random	
variables	X	and	Y	is	

� Note	that	

cov(X, Y ) = E[(X − E[X])(Y − E[Y ])]

cov(X,X) = E[(X − E[X])2] = var[X]
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A	neater	form	for	covariance	

� A	neater	expression	for	
covariance	(similar	deriva:on	as	
for	variance)	

cov(X, Y ) = E[XY ]− E[X]E[Y ]
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Correlation	coefficient	is	normalized		
covariance	

� The	correla:on	coefficient	is	

	

� When	X, Y	takes	on	values	with	equal	
probability	to	generate	data	sets	
{(x,y)},	the	correla:on	coefficient	will	
be	as	seen	in	Chapter	2.	

corr(X, Y ) =
cov(X, Y )

σXσY



Correlation	coefficient	is	normalized		
covariance	

� The	correla:on	coefficient	can	also	be	
wri\en	as:	

	 corr(X, Y ) =
E[XY ]− E[X]E[Y ]

σXσY



Correlation	seen	from	scatter	plots	

Posi:ve		
correla:on	
	

Nega:ve		
correla:on	

Zero		
Correla:on	
	

Credit:	
Prof.Forsyth	



Covariance	seen	from	scatter	plots	

Posi:ve		
Covariance	
	

Nega:ve		
Covariance	

Zero		
Covariance	
	

Credit:	
Prof.Forsyth	



When	correlation	coefficient	or	
covariance	is	zero		

�  The	covariance	is	0!	

�  That	is:	

�  This	is	a	necessary	property	of	
independence	of	random	variables	*	(not	
equal	to	independence)	

	

E[XY ]− E[X]E[Y ] = 0

E[XY ] = E[X]E[Y ]
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Variance	of	the	sum	of	two	random	
variables	

var[X + Y ] = var[X] + var[Y ] + 2cov(X, Y )

HW extra
points



If	events	X	&Y	are	independent,	
then	

�  																																														E[XY ] = E[X]E[Y ]

Tops
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These	are	equivalent!	
Uncorrelatedness	

�  																																														E[XY ] = E[X]E[Y ]

cov(X, Y ) = 0

var[X + Y ] = var[X] + var[Y ]
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Q:	What	is	this	expectation?	

� We	toss	two	iden:cal	coins	A	&	B	
independently	for	three	:mes	and	4	:mes	
respec:vely,	for	each	head	we	earn	$1,	we	
define	X	is	the	earning	from	A	and	Y	is	the	
earning	from	B.	What	is	E[XY]?	

					A.	$2							B.	$3								C.	$4																																										

Fair
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Uncorrelated		vs	Independent	

�  If	two	random	variables	are	
uncorrelated,	does	this	mean	they	are	
independent?	Inves:gate	the	case	X	
takes	-1,	0,	1	with	equal	probability	
and	Y=X2.	

work on it offline
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X,Y are depedeut ! ! but uncorrelated



Covariance	example	

It’s	an	underlying	concept	in	principal	
component	analysis	in	Chapter	10																																						



Random Variable Example for
*LLN
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2 RVs have the same distribution
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Three experiments of 2 students

Report ehe sum of random number each

finds after rolling a fair 4 - die .

each roll once, then add them .

③ one of them rolls twicetheir add them .

③ one of rolls once ,

then times with 2 .

X Y O Xt's

⑦ Xt Xz ③ 2 - X
,
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Markov’s	inequality	

�  For	any	random	variable	X that only takes 
x ≥ 0	and	constant	a	>	0	

	

�  For	example,	if	a	=	10	E[X]		
		

		

P (X ≥ a) ≤
E[X]

a

P (X ≥ 10E[X]) ≤
E[X]

10E[X]
= 0.1



Proof	of	Markov’s	inequality	
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Chebyshev’s	inequality	

�  For	any	random	variable	X	and	constant	a	>0	

	

�  If	we	let	a	=	kσ	where	σ	=	std[X]	

�  In	words,	the	probability	that	X	is	greater	than	
k	standard	devia:on	away	from	the	mean	is	
small		
		

		

P (|X − E[X]| ≥ kσ) ≤
1

k2

P (|X − E[X]| ≥ a) ≤
var[X]

a2



Proof	of	Chebyshev’s	inequality	

�  Given	Markov	inequality,	a>0,	x	≥	0	

�  We	can		rewrite	it	as		

ω	>	0	

	

P (X ≥ a) ≤
E[X]

a

P (|U | ≥ w) ≤
E[|U |]

w
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Proof	of	Chebyshev’s	inequality	

�  If		 U = (X − E[X])2

P (|U | ≥ w) ≤
E[|U |]

w
=
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Proof	of	Chebyshev’s	inequality	

�  Apply	Markov	inequality	to		

�  Subs:tute																																				and		

	

U = (X − E[X])2

P (|U | ≥ w) ≤
E[|U |]

w
=

E[U ]

w
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w
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P ((X − E[X])2 ≥ a
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var[X]
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a > 0Assume		

⇒ P (|X − E[X]| ≥ a) ≤
var[X]
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Sample	mean	and	IID	samples		

�  We	define	the	sample	mean					to	be	the	
average	of	N	random	variables	X1, …, XN.		

�  If	X1, …, XN are	independent	and	have	
iden)cal	probability	func:on		

					then	the	numbers	randomly	generated	from	
	them	are	called	IID	samples	

�  The	sample	mean	is	a	random	variable	

P (x)

X
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Sample	mean	and	IID	samples		

�  Assume	we	have	a	set	of	IID	samples	from	N	
random	variables	X1, …, XN	that	have	
probability	func:on	

�  We	use								to	denote	the	sample	mean	of	
these	IID	samples	

P (x)

X =

∑
N

i=1
Xi

N

X
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Expected	value	of	sample	mean	of	
IID	random	variables	
�  By	linearity	of	expected	value	
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Expected	value	of	sample	mean	of	
IID	random	variables	
�  By	linearity	of	expected	value	

�  Given	each	Xi	has	iden:cal		P (x)

E[X] = E[
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N
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Variance	of	sample	mean	of	IID	
random	variables	
�  By	the	scaling	property	of	variance	

var[X] = var[
1
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Variance	of	sample	mean	of	IID	
random	variables	
�  By	the	scaling	property	of	variance	

�  And	by	independence	of	these	IID	random	
variables	

var[X] = var[
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Variance	of	sample	mean	of	IID	
random	variables	
�  By	the	scaling	property	of	variance	

�  And	by	independence	of	these	IID	random	
variables	

�  Given	each	Xi	has	iden:cal										,		

var[X] = var[
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Expected	value	and	variance		of	sample	
mean	of	IID	random	variables	

�  The	expected	value	of	sample	mean	is	the	
same	as	the	expected	value	of	the	distribu:on	

�  The	variance	of	sample	mean	is	the	
distribu:on’s	variance	divided	by	the	sample	
size	N	

var[X] =
var[X]

N

E[X] = E[X]



Weak	law	of	large	numbers	

�  Given	a	random	variable	X	with	finite	variance,	
probability	distribu:on	func:on											and	the	
sample	mean						of	size	N.	

�  For	any	posi:ve	number			

�  That	is:	the	value	of	the	mean	of	IID	samples	is	very	
close	with	high	probability	to	the	expected	value	of	the	
popula:on	when	sample	size	is	very	large	

P (x)
X

lim
N→∞

P (|X− E[X]| ≥ ϵ) = 0

ϵ > 0



Proof	of	Weak	law	of	large	numbers	

�  Apply	Chebyshev’s	inequality	

P (|X− E[X]| ≥ ϵ) ≤
var[X]

ϵ2

I > o
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Proof	of	Weak	law	of	large	numbers	

�  Apply	Chebyshev’s	inequality	

�  Subs:tute																												and		E[X] = E[X] var[X] =
var[X]

N

P (|X− E[X]| ≥ ϵ) ≤
var[X]

ϵ2



Proof	of	Weak	law	of	large	numbers	

�  Apply	Chebyshev’s	inequality	

�  Subs:tute																												and		E[X] = E[X] var[X] =
var[X]

N

P (|X− E[X]| ≥ ϵ) ≤
var[X]

Nϵ2

P (|X− E[X]| ≥ ϵ) ≤
var[X]

ϵ2



Proof	of	Weak	law	of	large	numbers	

�  Apply	Chebyshev’s	inequality	

�  Subs:tute																												and		E[X] = E[X] var[X] =
var[X]

N

P (|X− E[X]| ≥ ϵ) ≤
var[X]

Nϵ2

P (|X− E[X]| ≥ ϵ) ≤
var[X]

ϵ2

N → ∞

0	



Proof	of	Weak	law	of	large	numbers	

�  Apply	Chebyshev’s	inequality	

�  Subs:tute																												and		E[X] = E[X] var[X] =
var[X]

N

P (|X− E[X]| ≥ ϵ) ≤
var[X]

Nϵ2

P (|X− E[X]| ≥ ϵ) ≤
var[X]

ϵ2

lim
N→∞

P (|X− E[X]| ≥ ϵ) = 0

N → ∞

0	



Applications	of	the	Weak	law	of	
large	numbers	
�  The	law	of	large	numbers	jus)fies	using	

simula)ons	(instead	of	calcula:on)		to	es:mate	
the	expected	values	of	random	variables		

�  The	law	of	large	numbers	also	jus)fies	using	
histogram	of	large	random	samples	to	
approximate	the	probability	distribu:on	
func:on											,	see	proof	on	
Pg.	353	of	the	textbook	by	DeGroot,	et	al.	

lim
N→∞

P (|X− E[X]| ≥ ϵ) = 0

P (x)



Histogram	of	large	random	IID	samples	
approximates	the	probability	distribution	

�  The	law	of	large	numbers	jus:fies	using	
histograms	to	approximate	the	probability	
distribu:on.	Given	N	IID	random	variables	X1, 
…, XN	
�  According	to	the	law	of	large	numbers 

�  As	we	know	for	indicator	func:on	
	E[Yi] = P (c1 ≤ Xi < c2)= P (c1 ≤ X < c2)

Y =

∑
N

i=1
Yi

N

N → ∞
E[Yi]



Simulation	of	the	sum	of	two-dice	

�  h\p://www.randomservices.org/
random/apps/DiceExperiment.html	



Assignments	

� Con:nue	to	work	on	HW4	

� Read	Module	Week	5	

� Next	:me:	Con:nuous	random	
variable,	classic	known	probability	
distribu:ons	

	



Additional	References	

�  Charles	M.	Grinstead	and	J.	Laurie	Snell	
"Introduc:on	to	Probability”		

� Morris	H.	Degroot	and	Mark	J.	Schervish	
"Probability	and	Sta:s:cs”	



See	you	next	time	

See 
You! 


