

"The weak law of large numbers gives us a very valuable way of thinking about expectations." --- Prof. Forsythe

Credit: wikipedia

Last time

- ** Random Variable
 - ****** Expected value
 - ***** Variance

Objectives

- ** Random Variable
 - ***** Review
 - ***** Covariance
 - ** The weak law of large numbers
 - ** Simulation & example of airline overbooking

Expected value

** The **expected value** (or **expectation**) of a random variable X is

$$E[X] = \sum_{x} x P(x) \qquad \text{of} \qquad \text{of}$$

The expected value is a weighted sum of all the values X can take

Linearity of Expectation

$$E[ax+bY] = a E[XI+bE[Y]$$

$$E[\sum_{i} c_{i} X_{i}] = \sum_{i} c_{i} E[X_{i}]$$

Expected value of a function of X

$$E[f(x)] = \sum_{x} f(x) P(x)$$

$$E[f(x,Y)] = \sum_{x} \sum_{y} f(x,y) P(x,y)$$

Motivation for covariance

- Study the relationship between random variables
- ** Note that it's the un-normalized correlation
- ** Applications include the fire control of radar, communicating in the presence of noise.
 ** M L

Covariance

** The covariance of random $x = \sum_{i=1}^{n} \hat{x}^{i}$ variables X and Y is

$$cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$

$$\underset{\times}{\text{E[f(X,Y)]}} = \sum_{\mathbf{z}} f(\mathbf{z},\mathbf{y}) P(\mathbf{z},\mathbf{y})$$

$$\underset{\times}{\text{hore } f(\mathbf{z},\mathbf{y})} = (\mathbf{z} - \mathbf{E}(\mathbf{z}))^2 = var[X]$$

A neater form for covariance

** A neater expression for covariance (similar derivation as for variance)

$$cov(X,Y) = E[XY] - E[X]E[Y]$$

Correlation coefficient is normalized covariance

* The correlation coefficient is

$$corr(X, Y) = \frac{cov(X, Y)}{\sigma_X \sigma_Y}$$

** When X, Y takes on values with equal probability to generate data sets $\{(x,y)\}$, the correlation coefficient will be as seen in Chapter 2.

Correlation coefficient is normalized covariance

** The correlation coefficient can also be written as:

$$corr(X, Y) = \frac{E[XY] - E[X]E[Y]}{\sigma_X \sigma_Y}$$

Correlation seen from scatter plots

Covariance seen from scatter plots

When correlation coefficient or covariance is zero

- ****** The covariance is 0!
- ****** That is:

$$E[XY] - E[X]E[Y] = 0$$

$$E[XY] = E[X]E[Y]$$

** This is a necessary property of independence of random variables * (not equal to independence)

Variance of the sum of two random variables

$$var[X + Y] = var[X] + var[Y] + 2cov(X, Y)$$

If events X & Y are independent, then RVs

$$E[XY] = E[X]E[Y]$$

$$E[XY] = \sum_{y \neq x} \sum_{y \neq x} P(x, y)$$

$$F(x, y) = \sum_{y \neq x} P(x)P(y) \text{ for } a(y)$$

$$P(x, y) = P(x)P(y) \text{ for } a(y)$$

$$P(x, y) = \sum_{y \neq x} P(x) y P(y)$$

$$= \sum_{y \neq x} P(x) y P(x)$$

$$= \sum_{y \neq x} P(x) y P(y)$$

$$= \sum_{x \neq x} P(x) y P(x)$$

These are equivalent! Uncorrelatedness

$$E[XY] = E[X]E[Y]$$

$$\text{then } \operatorname{Cov}(X,Y) = E[XY] - E[X]E[Y]$$

$$\operatorname{cov}(X,Y) = 0$$

$$\operatorname{cov}(X,Y) = 0$$

$$\operatorname{cov}(X,Y) = 0$$

$$var[X + Y] = var[X] + var[Y]$$

Q: What is this expectation?

Fair

** We toss two identical coins A & B independently for three times and 4 times respectively, for each head we earn \$1, we define X is the earning from A and Y is the earning from B. What is E[XY]?

A. 2 B. 3 C. 4

$X = A_1 + A_2 + A_3$ $Y = B_1 + B_2 + B_3 + B_4$

$$E[X] = E[A_1] + E[A_2] + E(A_3]$$

$$= 0.5 + 0.5 + 0.5 = 1.5$$

$$E[T] = E[\Sigma Bi] = \frac{4}{\Sigma} E[Si] = 4 \times 0.5 = 2$$

$$\therefore \times . T \text{ are independent}, E[XT] = E[X]E[T]$$

$$E[XT] = E[X]E[T] = 1.5 \times 2 = 3$$

Uncorrelated vs Independent

* If two random variables are uncorrelated, does this mean they are independent? Investigate the case X takes -1, 0, 1 with equal probability F[X]=?and $Y=X^2$. E[T]=? = E(XY)=? 0 X, Tare depredent!! but uncorrelated

Covariance example

It's an underlying concept in principal component analysis in Chapter 10

Random Variable Example for WLLN

104 254 dine quarter

E[x] = 3 E[x] = 3

1974(1-1)25

X Shake and take one and put back

2 RVs have the same distribution

Three experiments of z students

Report the sum of random number each finds after rolling a fair 4-die.

- 10 each roll once, then add them.
- @ one of them rolls twice, then add them.
- 3 one of rolls once, then times with 2.
 - X Y O X+Y
 - (1) XI+ XZ (3) 2. X1

Markov's inequality

** For any random variable X that *only* takes x > 0 and constant a > 0

$$P(X \ge a) \le \frac{E[X]}{a}$$

** For example, if a = 10 E[X]

$$P(X \ge 10E[X]) \le \frac{E[X]}{10E[X]} = 0.1$$

Proof of Markov's inequality

$$E[X] = \sum_{x} x \rho(x) = \sum_{x} p(x) + \sum_{x} p(x) + \sum_{x} p(x)$$

$$E[X] = \sum_{x} x \rho(x) = \sum_{x} p(x) + \sum_{x} p(x) + \sum_{x} p(x)$$

$$E[X] = \sum_{x} x \rho(x) = \sum_{x} p(x) + \sum_{x} p(x) + \sum_{x} p(x)$$

$$E[A] = \sum_{x} p(x) = \sum_{x} p(x) + \sum_{x} p(x) = \sum_{x} p(x)$$

$$E[X] = \sum_{x} p(x) = \sum_{x} p(x) = \sum_{x} p(x)$$

$$E[X] = \sum_{x} p(x) = \sum_{x} p(x) = \sum_{x} p(x)$$

$$E[X] = \sum_{x} p(x) = \sum_{x} p(x) = \sum_{x} p(x)$$

$$E[X] = \sum_{x} p(x) = \sum_{x} p(x) = \sum_{x} p(x)$$

$$E[X] = \sum_{x} p(x) = \sum_{x} p(x) = \sum_{x} p(x)$$

$$E[X] = \sum_{x} p(x) = \sum_{x} p(x) = \sum_{x} p(x)$$

$$E[X] = \sum_{x} p(x) = \sum_{x} p(x) = \sum_{x} p(x)$$

$$E[X] = \sum_{x} p(x) = \sum_{x} p(x) = \sum_{x} p(x)$$

$$E[X] = \sum_{x} p(x) = \sum_{x} p(x) = \sum_{x} p(x)$$

$$E[X] = \sum_{x} p(x) = \sum_{x} p(x) = \sum_{x} p(x)$$

$$E[X] = \sum_{x} p(x) = \sum_{x} p(x) = \sum_{x} p(x)$$

$$E[X] = \sum_{x} p(x) = \sum_{x} p(x) = \sum_{x} p(x)$$

$$E[X] = \sum_{x} p(x) = \sum_{x} p(x) = \sum_{x} p(x)$$

$$E[X] = \sum_{x} p(x) = \sum_{x} p(x) = \sum_{x} p(x)$$

$$E[X] = \sum_{x}$$

Chebyshev's inequality

** For any random variable X and constant a > 0

$$P(|X - E[X]| \ge a) \le \frac{var[X]}{a^2}$$

** If we let a = k σ where σ = std[X]

$$P(|X - E[X]| \ge k\sigma) \le \frac{1}{k^2}$$

** In words, the probability that X is greater than k standard deviation away from the mean is small

Proof of Chebyshev's inequality

** Given Markov inequality, a>0, x \geq 0

$$P(X \ge a) \le \frac{E[X]}{a}$$

* We can rewrite it as

$$\omega > 0 \qquad P(|U| \ge w) \le \frac{E[|U|]}{w}$$

$$U = (X - E[X])^{2}$$

Proof of Chebyshev's inequality

$$\# \text{ If } U = (X - E[X])^2$$

$$P(|U| \ge w) \le \frac{E[|U|]}{w} = \frac{E[U]}{w} = \frac{var[x]}{w}$$

$$E[U] = ? \quad E[(X - E[x])^2]$$

$$= var[x]$$

$$P(|(X - E[x])^2| \ge w) \le \frac{var[x]}{w}$$

$$LHS = P(|X - E[x]| \ge a)$$

$$RHS = \frac{var(x)}{a^2}$$

Proof of Chebyshev's inequality

** Apply Markov inequality to $U = (X - E[X])^2$

$$P(|U| \ge w) \le \frac{E[|U|]}{w} = \frac{E[U]}{w} = \frac{var[X]}{w}$$

** Substitute $U = (X - E[X])^2$ and $w = a^2$

$$P((X-E[X])^2 \geq a^2) \leq \frac{var[X]}{a^2} \quad \text{Assume } a > 0$$

$$\Rightarrow P(|X - E[X]| \ge a) \le \frac{var[X]}{a^2}$$

Sample mean and IID samples

- ** We define the sample mean \mathbf{X} to be the average of \mathbf{N} random variables $X_1, ..., X_N$.
- ** If X_I , ..., X_N are *independent* and have *identical* probability function P(x)
 - then the numbers randomly generated from them are called **IID** samples
- ** The sample mean is a random variable

Random Variable Example

104 254 Line quarter

* Shake and take one and put back.

X, +akes
$$x_{i=10}$$
 $E[X] = ?$

X2 +akes $x_{i=10}$

X3 +akes $x_{3} = 25$
 $X = -\frac{1}{2}$

XN +akes $x_{N} = 10$

Sample mean and IID samples

- ** Assume we have a set of **IID samples** from **N** random variables X_I , ..., X_N that have probability function P(x)
- ** We use \overline{X} to denote the sample mean of these IID samples $= \sum_{i=1}^{N} X_i \quad \text{var}[\bar{X}]$

$$\overline{\mathbf{X}} = \frac{\sum_{i=1}^{N} X_i}{N}$$

Expected value of sample mean of IID random variables

** By linearity of expected value

$$E[\overline{\mathbf{X}}] = E\left[\frac{\sum_{i=1}^{N} X_i}{N}\right] = \frac{1}{N} \sum_{i=1}^{N} E[X_i]$$

$$= \frac{1}{N} \cdot N \cdot E[X]$$

$$E(XI) = E(XI) - \cdots = E(XN)$$

Expected value of sample mean of IID random variables

** By linearity of expected value

$$E[\overline{\mathbf{X}}] = E\left[\frac{\sum_{i=1}^{N} X_i}{N}\right] = \frac{1}{N} \sum_{i=1}^{N} E[X_i]$$

** Given each X_i has identical P(x) $\xrightarrow{\text{the Same}}$

$$E[\overline{\mathbf{X}}] = \frac{1}{N} \sum_{i=1}^{N} E[X] = E[X]$$

Variance of sample mean of IID random variables

** By the scaling property of variance

Variance of sample mean of IID random variables

** By the scaling property of variance

$$var[\overline{\mathbf{X}}] = var[\frac{1}{N} \sum_{i=1}^{N} X_i] = \underbrace{\frac{1}{N^2}} var[\sum_{i=1}^{N} X_i]$$

** And by independence of these IID random variables N

$$var[\overline{\mathbf{X}}] = \frac{1}{N^2} \sum_{i=1}^{N} var[X_i]$$

$$= \underbrace{1}_{N^2} \cdot N \cdot var[X]$$

$$= \underbrace{1}_{N^2} \cdot N \cdot var[X]$$

Variance of sample mean of IID random variables

** By the scaling property of variance

$$var[\overline{\mathbf{X}}] = var[\frac{1}{N} \sum_{i=1}^{N} X_i] = \underbrace{\frac{1}{N^2}} var[\sum_{i=1}^{N} X_i]$$

** And by independence of these IID random variables N

$$var[\overline{\mathbf{X}}] = \frac{1}{N^2} \sum_{i=1}^{N} var[X_i]$$

Given each X_i has identical P(x), $var[X_i] = var[X]$

$$var[\overline{\mathbf{X}}] = \frac{1}{N^2} \sum_{i=1}^{N} var[X] = \frac{var[X]}{N}$$

Expected value and variance of sample mean of IID random variables

** The expected value of sample mean is the same as the expected value of the distribution

$$E[\overline{\mathbf{X}}] = E[X]$$

** The variance of sample mean is the distribution's variance divided by the sample size N

$$var[\overline{\mathbf{X}}] = \frac{var[X]}{N}$$

Weak law of large numbers

- ** Given a random variable X with finite variance, probability distribution function P(x) and the sample mean $\overline{\mathbf{X}}$ of size N.
- ** For any positive number $\epsilon > 0$

$$\lim_{N \to \infty} P(|\overline{\mathbf{X}} - E[X]| \ge \epsilon) = 0$$

** That is: the value of the mean of **IID** samples is very close with high probability to the expected value of the population when sample size is very large

** Apply Chebyshev's inequality

$$P(|\overline{X} - E[\overline{X}]| \ge \epsilon) \le \frac{var[X]}{\epsilon^2}$$

$$E[\widehat{X}] = E[X]$$

$$var[\widehat{X}] = \underbrace{var[X]}$$

$$P(|\overline{X} - E[X]| \ge \Sigma) \le \underbrace{var[X]}$$

$$P(|\overline{X} - E[X]| \ge \Sigma) \le \underbrace{var[X]}$$

$$N \to \infty$$

$$||\widehat{X}|| \ge \epsilon \le \frac{var[X]}{\epsilon^2}$$

* Apply Chebyshev's inequality

** Apply Chebyshev's inequality

$$P(|\overline{\mathbf{X}} - E[\mathbf{X}]| \ge \epsilon) \le \frac{var[\mathbf{X}]}{N\epsilon^2}$$

* Apply Chebyshev's inequality

$$P(|\overline{\mathbf{X}} - E[\overline{\mathbf{X}}]| \ge \epsilon) \le \frac{var[\mathbf{X}]}{\epsilon^2}$$

 $** Substitute $E[\overline{\mathbf{X}}] = E[X]$ and $var[\overline{\mathbf{X}}] = \frac{var[X]}{N}$$

$$P(|\overline{\mathbf{X}} - E[\mathbf{X}]| \ge \epsilon) \le \frac{var[\mathbf{X}]}{N\epsilon^2} \xrightarrow[N \to \infty]{} \mathbf{0}$$

** Apply Chebyshev's inequality

$$P(|\overline{\mathbf{X}} - E[\overline{\mathbf{X}}]| \ge \epsilon) \le \frac{var[\mathbf{X}]}{\epsilon^2}$$

 $\# \ \ \text{Substitute} \ E[\overline{\mathbf{X}}] = E[X] \ \ \text{and} \ var[\overline{\mathbf{X}}] = \frac{var[X]}{N}$

$$P(|\overline{\mathbf{X}} - E[\mathbf{X}]| \ge \epsilon) \le \frac{var[\mathbf{X}]}{N\epsilon^2} \xrightarrow[N \to \infty]{} \mathbf{0}$$

$$\lim_{N \to \infty} P(|\overline{\mathbf{X}} - E[X]| \ge \epsilon) = 0$$

Applications of the Weak law of large numbers

** The law of large numbers justifies using simulations (instead of calculation) to estimate the expected values of random variables

$$\lim_{N \to \infty} P(|\overline{\mathbf{X}} - E[X]| \ge \epsilon) = 0$$

** The law of large numbers also *justifies using histogram* of large random samples to approximate the probability distribution function P(x), see proof on Pg. 353 of the textbook by DeGroot, et al.

Histogram of large random IID samples approximates the probability distribution

** The law of large numbers justifies using histograms to approximate the probability distribution. Given **N** IID random variables X_{I} ,

$$\dots$$
, X_N

* According to the law of large numbers

$$\overline{\mathbf{Y}} = \frac{\sum_{i=1}^{N} Y_i}{N} \xrightarrow{N \to \infty} E[Y_i]$$

* As we know for indicator function

$$E[Y_i] = P(c_1 \le X_i < c_2) = P(c_1 \le X < c_2)$$

Simulation of the sum of two-dice

** http://www.randomservices.org/
random/apps/DiceExperiment.html

Assignments

- ****** Continue to work on HW4
- ** Read Module Week 5
- ** Next time: Continuous random variable, classic known probability distributions

Additional References

- ** Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

