Probability and Statistics 7 for Computer Science

"The weak law of large" numbers gives us a very valuable way of thinking about expectations." ---Prof. Forsythe

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 02.23.2021

Last time

Kandom Variable

Expected value

$*$ Variance

Objectives

Kandom Variable

- Covariance
- *The weak law of large numbers*
- **Example of airline Example** of airline *overbooking*

Expected value

EXECUTE: The expected value (or expectation) $\mathcal{D}(\boldsymbol{\chi})$ of a random variable X is $E[X] = \sum xP(x)$ Theoretical \overline{x} \leq \mathbf{A} The expected value is a weighted sum of all the values X can take

Linearity of Expectation

$E[aX+bY]=aE[X]+bE[Y]$ $E[\sum_{i} c_i X_i] = \sum_{i} c_i E[X_i]$

Expected value of a function of \overline{X}

$E[f(x)] = \sum_{x} f(x) p(x)$

$E[f(x, Y)] = \sum_{x} \sum_{y} f(x, y) P(x, y)$

Motivation for covariance

- $*$ Study the relationship between random variables
- $*$ Note that it's the un-normalized correlation
- **Komark** Applications include the fire control of radar, communicating in the presence of noise.

Covariance

***** The covariance of random (**= ऽ४ँ) variables X and Y is

cov(X, Y) = $E[(X - E[X])(Y - E[Y])]$
 $E[$ $f(x, Y)$ = $\sum_{x} \sum_{y} f(x, y) p(x, y)$
 $*$ Note that

cov(X, X) = $E[(X - E[X])^2] = var[X]$

A neater form for covariance

KKA neater expression for covariance (similar derivation as for variance) $cov(X, Y) = E[XY] - E[X]E[Y]$ $\frac{y_{1011}}{y_{101}}$ \circ 0 0 $\overline{\bullet}$ l $\boldsymbol{\chi}$

Correlation coefficient is normalized covariance

$*$ The correlation coefficient is $corr(X, Y) = \frac{cov(X, Y)}{P}$ $\sigma_X \sigma_Y$

 \mathscr{W} When X , Y takes on values with equal probability to generate data sets $\{(x,y)\}\$, the correlation coefficient will be as seen in Chapter 2.

Correlation coefficient is normalized covariance

* The correlation coefficient can also be written as:

 $corr(X, Y) = \frac{E[XY] - E[X]E[Y]}{E[X]E[Y]}$ $\sigma_X \sigma_Y$

Correlation seen from scatter plots

Covariance seen from scatter plots

When correlation coefficient or covariance is zero

Variance of the sum of two random variables

 $var[X + Y] = var[X] + var[Y] + 2cov(X, Y)$

If events X & Y are independent, then

 $\mathcal{E}[XY] = E[X]E[Y]$ $E[XY] = \sum \sum x y P(x, y)$ $y = P^{(x,y)}$
 $y = P(x)P(y)$ for all
 $P(x,y) = P(x)P(y)$ for all $RHS = \sum_{x} \sum_{x} x P(x) Y P(y)$ = $\Sigma \downarrow P(y) \Sigma \downarrow P(x)$ = $E(Y)E[X]$ $= E[X] E[Y]$

These are equivalent! Uncorrelatedness

then Cov (X, Y) = E[XY) - E[X]E[Y] $cov(X,Y)=0$ 0
 $Gorc(X, Y) = 0$

 $var[X + Y] = var[X] + var[Y]$

Q: What is this expectation?

Lair

* We toss two identical coins A & B independently for three times and 4 times respectively, for each head we earn \$1, we define X is the earning from A and Y is the earning from B. What is $E[XY]$?

B. 3 C_{4} A. 2

$$
X = A1 + A2 + A3
$$

\n
$$
Y = B1 + B2 + B3 + B4
$$

\n
$$
E[X] = E[A1] + E[A2] + E(A3)]
$$

\n
$$
E[Y] = E[\sum Bi] = \sum_{i=1}^{4} E[Bi] = 4x \text{ as } z = 2
$$

\n
$$
\therefore X \text{ are independent, } E[XY] = E[X] \in [X]
$$

\n
$$
E[XY] = E[X] \in [Y] = \text{c} [X] \in [Y]
$$

work on it

Uncorrelated vs Independent

 $*$ If two random variables are uncorrelated, does this mean they are independent? Investigate the case X takes -1, 0, 1 with equal probability $F[X] = ?$ and $Y=X^2$. $E[Y]= ?$ $\frac{2}{3}$ $F[X^{\gamma}] = ?$ 0 X, Y are depedent!! but uncorrelated

Covariance example

It's an underlying concept in principal component analysis in Chapter 10

Random Variable Example for $11 - 60$

and put back

2 RUs have the same distribution

Three experiments of 2 students

Report the sum of random number each
\nfinds after rolling a fair 4- die.

\n① each roll one, then add them.

\n③ one of them rolls twice, then add them.

\n③ one of rolls one, then add them.

\n③ one of only one, then add them.

\n③
$$
x + y = 0
$$

\n⑤ $x + y = 0$

\n② $x + y = 0$

\n② $x + y = 0$

\n③ $x + y = 0$

\n③ $x + y = 0$

Markov's inequality

 For any random variable *X* that *only* take*s* $x > 0$ and constant $a > 0$

$$
P(X \ge a) \le \frac{E[X]}{a}
$$

 \equiv For example, if $a = 10$ E[X]

$$
P(X \ge 10E[X]) \le \frac{E[X]}{10E[X]} = 0.1
$$

Proof of Markov's inequality

Chebyshev's inequality

- $*$ For any random variable X and constant $a > 0$ $P(|X - E[X]| \ge a) \le$ $var[X]$ $\overline{a^2}$
- \mathscr{W} If we let a = ko where $\sigma = \text{std}[X]$ $P(|X - E[X]| \geq k\sigma) \leq$ 1 $\overline{k^2}$
- $*$ In words, the probability that X is greater than k standard deviation away from the mean is small

Proof of Chebyshev's inequality

- $*$ Given Markov inequality, a>0, x ≥ 0 $P(X \ge a) \le$ $E[X]$ \overline{a}
- $*$ We can rewrite it as *ω* > 0 $P(|U| \geq w) \leq$ $E[|U|]$ $\overline{\overline{w}}$ $U = ($ $\leq w \leq \frac{w}{w}$
X-E[x]]²

Proof of Chebyshev's inequality

$$
\ast \text{ If } U = (X - E[X])^2
$$

var [X] $P(|U| \geq w) \leq \frac{E[|U|]}{w} = \frac{E[U]}{w}$ $E[U]=?$ $E[(X-E[X])^2]$ $= var Ex1$ $P(|(X-E[X])^2| \ge w)| \le \frac{Var[X]}{Var[X]}$ $LHS = P(|X-E[X]| > a)$
RHS = $\frac{var(x)}{var(x)}$ $w = a^L$

Proof of Chebyshev's inequality

Examply Markov inequality to $U = (X - E[X])^2$ $P(|U| \geq w) \leq$ $E[|U|]$ $\overline{\overline{w}}$ = $E[U]$ $\overline{\overline{w}}$ = $var[X]$ $\overline{\overline{w}}$

 $*$ Substitute $U = (X - E[X])^2$ and $w = a^2$

$$
P((X - E[X])^2 \ge a^2) \le \frac{var[X]}{a^2} \quad \text{Assume } a > 0
$$

$$
\Rightarrow P(|X - E[X]| \ge a) \le \frac{var[X]}{a^2}
$$

Sample mean and IID samples

- $\mathscr W$ We define the sample mean $\overline{\mathbf X}$ to be the average of **N** random variables $X_1, ..., X_N$.
- \mathscr{W} If $X_1, ..., X_N$ are *independent* and have \vec{a} *identical* probability function $P(x)$

then the numbers randomly generated from them are called **IID** samples

EXECTE: The **sample mean** is a random variable

Random Variable Example

* Shake and take one and put back.

Sample mean and IID samples

- * Assume we have a set of IID samples from N random variables $X_1, ..., X_N$ that have probability function $P(x)$
- \mathscr{H} We use \overline{X} to denote the sample mean of these **IID** samples $E[X]$

var[x]

$$
\overline{\mathbf{X}} = \frac{\sum_{i=1}^{N} X_i}{N}
$$

Expected value of sample mean of **IID random variables**

By linearity of expected value ☀

= $E[X]$

Expected value of sample mean of IID random variables

By linearity of expected value

$$
E[\overline{\mathbf{X}}] = E[\frac{\sum_{i=1}^{N} X_i}{N}] = \frac{1}{N} \sum_{i=1}^{N} E[X_i]
$$

\n
$$
\begin{array}{|c|c|c|}\n\hline\n\text{Given each } X_i \text{ has identical } P(x) & \text{the same} \\
\hline\nE[\overline{\mathbf{X}}] = \frac{1}{N} \sum_{i=1}^{N} E[X] = E[X] \\
\hline\n\end{array}
$$

Variance of sample mean of IID random variables

* By the scaling property of variance $var[\overline{\mathbf{X}}] = var[\frac{1}{N} \sum_{i=1}^{N} X_i] = \underbrace{\left(\frac{1}{N^2}\right)}_{i=1} var[\sum_{i=1}^{N} X_i]$

 $\frac{1}{2}$

 X_i are indpt to X_j
=> cor(X_i , Y_j)=0 i#j $var[X+X_2] = var[X] + var[X_2]$

$$
lener^{(1)}k! \times [x_{1}+x_{2}] = Var[X_{1}] + Var[X_{2}]
$$
\n
$$
S = Var[X_{1}] + Var[X_{2}]
$$

Variance of sample mean of IID random variables

 $*$ By the scaling property of variance $var[\overline{\mathbf{X}}] = var[$ 1 $\overline{\overline{N}}$ \sum N $i=1$ $X_i] = \left(\frac{1}{\lambda t}\right)$ $\frac{1}{N^2}var[\sum$ \overline{N} $i=1$ $[X_i]$

KETAN And by independence of these IID random variables \overline{N}

$$
var[\overline{\mathbf{X}}] = \frac{1}{N^2} \sum_{i=1}^{N} var[X_i]
$$

= $\frac{1}{N^2}$ \cdot \cdot

Variance of sample mean of IID random variables

 $*$ By the scaling property of variance $var[\overline{\mathbf{X}}] = var[$ 1 $\overline{\overline{N}}$ \sum N $i=1$ $X_i] = \left(\frac{1}{\lambda t}\right)$ $\frac{1}{N^2}var[\sum$ \overline{N} $i=1$ $[X_i]$

KETAN And by independence of these IID random variables N

$$
var[\overline{\mathbf{X}}] = \frac{1}{N^2} \sum_{i=1}^{N} var[X_i]
$$

 $\frac{1}{2}$ Given each X_i has identical $P(x)$, $var[X_i] = var[X]$

$$
var[\overline{\mathbf{X}}] = \frac{1}{N^2} \sum_{i=1}^{N} var[X] = \frac{var[X]}{N}
$$

Expected value and variance of sample mean of IID random variables

 $*$ The expected value of sample mean is the same as the expected value of the distribution

$$
E[\overline{\mathbf{X}}] = E[X]
$$

 $*$ The variance of sample mean is the distribution's variance divided by the sample size N

$$
var[\overline{\mathbf{X}}] = \frac{var[X]}{N}
$$

Weak law of large numbers

- $*$ Given a random variable X with finite variance, probability distribution function $P(x)$ and the sample mean $\overline{\mathbf{X}}$ of size N *.*
- $\frac{1}{2}$ For any positive number $\epsilon > 0$

$$
\lim_{N \to \infty} P(|\overline{\mathbf{X}} - E[X]| \ge \epsilon) = 0
$$

EXECTE: That is: the value of the mean of IID samples is very close with high probability to the expected value of the population when sample size is very large

 $\Sigma > 0$ * Apply Chebyshey's inequality $P(|\overline{\mathbf{X}} - E[\overline{\mathbf{X}}]| \geq \epsilon) \leq \frac{var[\mathbf{X}]}{2}$ $E[\hat{x}] = E[x]$ $var[\widehat{x}] = var[x]$ $Var[x]$ $P(|x - E[x]| \geq s)^N < N+20$ $\lim LHS = 0$

EXECUTE: Apply Chebyshey's inequality <p>∴</p>\n$(-1)^{n-1} - (-1)^{n-2}$\ne^{2}\n<p>Substitute</p>\n$E[\overline{\mathbf{X}}] = E[X]$\n<p>and</p>\n$var[\overline{\mathbf{X}}] = \frac{var[X]}{N}$ $\overline{\overline{N}}$ $P(|\overline{\mathbf{X}} - E[\overline{\mathbf{X}}]| \geq \epsilon) \leq$ $var[\overline{\mathbf{X}}]$ $\overline{\epsilon^2}$

EXECUTE: Apply Chebyshey's inequality <p>∴</p>\n$(-1)^{n-1} - (-1)^{n-2}$\ne^{2}\n<p>Substitute</p>\n$E[\overline{\mathbf{X}}] = E[X]$\n<p>and</p>\n$var[\overline{\mathbf{X}}] = \frac{var[X]}{N}$ $\overline{\overline{N}}$ $P(|\overline{\mathbf{X}} - E[\mathbf{X}]| \geq \epsilon) \leq$ $var[\mathbf{X}]$ $\overline{N\epsilon^2}$ $P(|\overline{\mathbf{X}} - E[\overline{\mathbf{X}}]| \geq \epsilon) \leq$ $var[\overline{\mathbf{X}}]$ $\overline{\epsilon^2}$

EXECUTE: Apply Chebyshey's inequality <p>∴</p>\n$(-1)^{n-1} - (-1)^{n-2}$\ne^{2}\n<p>Substitute</p>\n$E[\overline{\mathbf{X}}] = E[X]$\n<p>and</p>\n$var[\overline{\mathbf{X}}] = \frac{var[X]}{N}$ $\overline{\overline{N}}$ $P(|\overline{\mathbf{X}} - E[\mathbf{X}]| \geq \epsilon) \leq$ $var[\mathbf{X}]$ $\overline{N\epsilon^2}$ $N\to\infty$ $P(|\overline{\mathbf{X}} - E[\overline{\mathbf{X}}]| \geq \epsilon) \leq$ $var[\overline{\mathbf{X}}]$ $\overline{\epsilon^2}$ 0

EXECUTE: Apply Chebyshey's inequality <p>∴</p>\n$(-1)^{n-1} - (-1)^{n-2}$\ne^{2}\n<p>Substitute</p>\n$E[\overline{\mathbf{X}}] = E[X]$\n<p>and</p>\n$var[\overline{\mathbf{X}}] = \frac{var[X]}{N}$ $\overline{\overline{N}}$ $P(|\overline{\mathbf{X}} - E[\mathbf{X}]| \geq \epsilon) \leq$ $var[\mathbf{X}]$ $\overline{N\epsilon^2}$ $N\to\infty$ $P(|\overline{\mathbf{X}} - E[\overline{\mathbf{X}}]| \geq \epsilon) \leq$ $var[\overline{\mathbf{X}}]$ $\overline{\epsilon^2}$ $lim\n$ $N\rightarrow\infty$ $P(|\overline{\mathbf{X}} - E[X]| \geq \epsilon) = 0$ 0

Applications of the Weak law of large numbers

EXECTE: The law of large numbers *justifies using* **simulations** (instead of calculation) to estimate the expected values of random variables

$$
\lim_{N \to \infty} P(|\overline{\mathbf{X}} - E[X]| \ge \epsilon) = 0
$$

EXECTE: The law of large numbers also *justifies using* **histogram** of large random samples to approximate the probability distribution function $\overline{P}(x)$, see proof on Pg. 353 of the textbook by DeGroot, et al.

Histogram of large random IID samples approximates the probability distribution

- $*$ The law of large numbers justifies using histograms to approximate the probability distribution. Given \boldsymbol{N} IID random variables X_i ,
	- \ldots, X_N

 $*$ According to the law of large numbers

$$
\overline{\mathbf{Y}} = \frac{\sum_{i=1}^{N} Y_i}{N} \xrightarrow{N \to \infty} E[Y_i]
$$

 $*$ As we know for indicator function

 $E[Y_i] = P(c_1 \leq X_i < c_2) = P(c_1 \leq X < c_2)$

Simulation of the sum of two-dice

$*$ http://www.randomservices.org/ random/apps/DiceExperiment.html

Assignments

$*$ Continue to work on HW4

Read Module Week 5

$*$ Next time: Continuous random variable, classic known probability distributions

Additional References

- **KET Charles M. Grinstead and J. Laurie Snell** "Introduction to Probability"
- **KERETHER Morris H. Degroot and Mark J. Schervish** "Probability and Statistics"

See you next time

See You!

