Probability and Statistics 2

for Computer Science

“The weak law of large
numbers gives us a very
valuable way of thinking
about expectations.” ---Prof.
Forsythe
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Expected value

The expected value (or expectation)

of arandom variable Xis "™’
s

9 X’ﬂ)

(%)
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The expected value is a welghted sum
of all the values X can take



Linearity of Expectation
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Expected value of a function of X
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Motivation for covariance

Study the relationship between
random variables

Note that it’s the un-normalized
correlation

Applications include the fire control
of radar, communicating in the
presence of noise. X ML



Covariance
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The covariance of random <~~~ =1
variables X'and Y is

cov(X,Y)=FE[(X — EFX])(Y — E|Y])]
[t4(x Y)].— 3Y {,cx-,y) Px/ 4>
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cov(X, X) = E[(X — E[X])?] = var[X]



A neater form for covariance

A neater expression for
covariance (similar deriv\zr:\tion as
for variance)

cov(X,Y) = E[XY] — E[X|E[Y]




Correlation coefficient is normalized

covariance

The correlation coefficient is
cov(X,Y)

Ox0y

corr(X,Y) =

When X, Y takes on values with equal
probability to generate data sets
{(x,»)}, the correlation coefficient will
be as seen in Chapter 2.



Correlation coefficient is normalized

covariance

The correlation coefficient can also be
written as:

E[XY] - E[X|E[Y]

OxO0y

corr(X,Y) =




Correlation seen from scatter plots

Normalized heart rate
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Covariance seen from scatter plots

Normalized heart rate
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When correlation coefficient or

covariance Is zero

The cova r|ance |S O! |NOCorrelation l

° viXx ¥)=o0
That is: ; ‘: = GYr(XY)=p
% o "" !
E[XY] - E[X]E[Y]=0 - i
EIXY| = E|X|E]Y] T ity e

This is a necessary property of
independence of random variables * (not
equal to independence)



Variance of the sum of two random

var| X + Y| = var| X| + var|Y| + 2cov(X,Y)

HW ex+ra
potvt's



It ex=2= X &Y are independent,

then "R s

E[XY] = E[X|E[Y]
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These are equivalent!

Uncorrelatedness

E[XY] = E[X|E[Y]

' E (xT1=E<1ElT)
e Cov X)) = ECXT - EGELY]

cov(X,Y) =0 o

e CorY ()(,Y)-:O

var! X + Y| = var|X| + var|Y]



Q: What is this expectation?

aer
We toss twotidentical coins A&B
independently for three times and 4 times
respectively, for each head we earn S1, we
define X'is the earning from A and Y is the

earning from B. What is E[XY]?
A. 2 B. 3 C. 4
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werk et ofyline

Uncorrelated vs Independent

If two random variables are
uncorrelated, does this mean they are
independent? Investigate the case X
takes -1, 0, 1 with equal probability

and Y=X2. E(xX)=2 ©
e[T1=°
c[(XT)=? o

X)Y are deped%‘t!j but un(.orrzlq,'md



Covariance example

It’s an underlying concept in principal
component analysis in Chapter 10
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Three experiments o4 2 studentTs
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Markov's inequality

For any random variable X that only takes
x > (0 and constanta >0

P(X >a) < EIX]

o a

For example, if a = 10 E[X]

P(X > 10E[X]) <



Proof of Markov's inequality

3.\/&«: X220 Q>eo
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Chebyshev's inequality

For any random variable X and constant a >0

fﬂX—Ewﬂz@<“qu

S T
If we let a = ko where o = std[.X]

P(X ~ BX)| > ko) <

In words, the probability that X is greater than
k standard deviation away from the mean is
small



Proof of Chebyshev's inequality

Given Markov inequality, a>0, x>0

E|X
P(X >a) < X
a
We can rewrite it as
W

U= (X-€lx])"




Proof of Chebyshev's inequality

f U= (X~ E[X])?

uar[’ﬂ
P(IU\zw)sEHUH_M = Y
w w
E[u)=? E[(X-€E[x1)?]
-;ua.r[X]
pClX-etl 2w) ¢ Yar LX)
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Proof of Chebyshev's inequality

Apply Markov inequality to U = (X — E[X])?

) N\
P(|U| > w) < E(U]] _ EU| _ var|X|

S var| X|

4 \ @ ™
= P(Ix — BX]| > ) < Y05

\_ )

Assume a > ()

Substitute U = (X — E[X])? and w = a°
P((X — E[X])*>a%) <




Sample mean and IID samples

We define the sample mean X to be the
average of N random variables X, ..., X.

It X, ..., X\yare independent and have
identical probability function P(z)

then the numbers randomly generated from
them are called IID samples

The sample mean is a random variable
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Sample mean and IID samples

Assume we have a set of IID samples from N
random variables X, ..., X, that have
probability function P(x)

We use X to denote the sample mean of
these 1ID samples E [ % ]

Sj,f\il X; varl X]
N

X =



Expected value of sample mean of

IID random variables

By linearity of expected value

~] ZLX%' _ 1 =
BX) = BI=5 = 5 3B
_ L . ~noelx]
(0 v{> N
E(x1=elx.) - = ElXy



Expected value of sample mean of

IID random variables

By linearity of expected value

E[X] = [Z@ 1X ZE

Given each X has identical P(x 7[“‘4 Same
ECX)

-
Z E X]/X




Variance of sample mean of IID

random variables

By the scaling property of variance

_ 1 & =
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ver (5] V2 %

.a;l“"JW[IX] X: ovr & "Wd’rrf t"’ X):
=9 wy(x{-,sg.):e f:?)'

a . Jéar [x,+Xv) 90‘4'0(:740«'0(,]
erarqliled N i
- Vér(C z/xt‘]: SUM[K.] vu[k]

C=¢ 7N



Variance of sample mean of IID

random variables

By the scaling property of variance

N
var[X| = var[— Z X;] var[z X;]
i=1

And by mdependence of these IID random
variables N




Variance of sample mean of IID

random variables

By the scaling property of variance

N
var[X| = var[i[ ;X var ZX
And by independence of these IID random
variables |
var|X] = N2 Zvar[Xi]
i=1
Given eachX has |dent|caIP(:c) vm’[Xz-]_? var| X
var[X] = N2 Zvar UCLZ\EX]
\_ 1=1 y




Expected value and variance of sample

mean of IID random variables

The expected value of sample mean is the
same as the expected value of the distribution

[mﬁzEw]j

The variance of sample mean is the
distribution’s variance divided by the sample
size N




Weak law of large numbers

Given a random variable X with finite variance,
probability distribution function P(x) and the
sample mean X of size N.

For any positive number ¢ > 0
lim P(|X — E[X]|| >¢€) =0
N —00

That is: the value of the mean of IID samples is very
close with high probability to the expected value of the
population when sample size is very large



Proof of Weak law of large numbers

Apply Chebyshev’s inequality >0

var|X]
Flx]) = E[x]e
vm[)?] = VM[Xl

U N Jarlx]
Peix-eMlzs) s —5—

L .
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P(X - E[X]| > ¢) <




Proof of Weak law of large numbers

Apply Chebyshev’s inequality
X
P(X - BX]| > o) < "X

var| X]

Substitute E[X| = E[X] and ”UQ,’]"[X] = —



Proof of Weak law of large numbers

Apply Chebyshev’s inequality

P(X - E[X]| > ¢ < "X
“  —  war[X]

Substitute E[X| = E[X] and var[X]| = ~

— var|X]
P(X — E[X]| > o) < "2




Proof of Weak law of large numbers

Apply Chebyshev’s inequality

P(X - E[X]| > ¢ < 205
Substitute E[X] = E[X] and var[X] = Um]“\[fX]
~ var|X] N
P(X — ElX][ 2 €) < Ne2 N — oo 0



Proof of Weak law of large numbers

Apply Chebyshev’s inequality

var|X|

P(IX - E[X]| > €) < —
“  —  war[X]

Substitute E[X| = E[X] and var[X]| = ~

— var|X]
— > €) < -0
P(X ~ BX]| > ) < “02H ——

é )

lim P(|X — E[X]| > ¢) =0
\N—>oo )




Applications of the Weak law of

large numbers

The law of large numbers justifies using
simulations (instead of calculation) to estimate
the expected values of random variables

lim P(|X — E[X]|| >¢€) =0
N—00

The law of large numbers also justifies using
histogram of large random samples to
approximate the probability distribution
function P(x), see proof on

Pg. 353 of the textbook by DeGroot, et al.




Histogram of large random IID samples

approximates the probability distribution

The law of large numbers justifies using
histograms to approximate the probability
distribution. Given N IID random variables X,
ey Xy

% According to the law of large numbers
ZN Y; N — o0
— 1=1 > E[)./;]
N

* As we know for indicator function

E[}/;]:P(ClSXi<CQ):P(61§X<CQ)

Y




Simulation of the sum of two-dice

http://www.randomservices.org/
random/apps/DiceExperiment.html



Continue to work on HW4
Read Module Week 5

Next time: Continuous random
variable, classic known probability
distributions



Additional References

Charles M. Grinstead and J. Laurie Snell
"Introduction to Probability”

Morris H. Degroot and Mark J. Schervish
"Probability and Statistics”



See you next time




