Probability and Statistics 7 for Computer Science

"The weak law of large" numbers gives us a very valuable way of thinking about expectations." ---Prof. Forsythe

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 02.23.2021

Last time

✺Random Variable

✺ *Expected value*

✺ *Variance & covariance*

Objectives

✺Random Variable

- ✺ Covariance
- ✺ *The weak law of large numbers*
- $\frac{1}{2}$ *Simulation & example of airline overbooking*

Expected value

EXECTED We area value (or expectation) of a random variable *X* is

$$
E[X] = \sum_{x} xP(x)
$$

The expected value is a weighted sum of **all** the values *X* can take

Linearity of Expectation

$\overline{\mathsf{Expected}}$ value of a function of X

What is $E[E[X]]$?

- A. E[X]
- B. 0
- C. Can't be sure

Probability distribution

✺ Given the random variable *X,* what is $E[2|X| + 1]$? *X* 1 1/2 0 $p(x)$ $\bigcap_{x \in \mathbb{R}} P(x = x)$ -1 A. 0 **B.** 1 $C.2$ D. 3 E. 5

Probability distribution

✺ Given the random variable *S in the 4 sided die, whose range is* {2,3,4,5,6,7,8}, probability distribution of S. *S* 2 3 4 5 6 7 8 $p(s)$ 1/16 What is **E[S]**? A. 4 B. 5 C. 6

A neater expression for variance

✺Variance of Random Variable X is defined as:

$$
var[X] = E[(X - E[X])^2]
$$

 $*$ It's the same as:

 $var[X] = E[X^2] - E[X]^2$

Probability distribution and cumulativé distribution

✺ Given the random variable *X,* what is $var[2|X| + 1]$? A. 0

Probability distribution

✺ Given the random variable *X,* what is $var[2|X| + 1]$? Let $Y = 2|X| + 1$ *X* 3 1 0 $P(y)$ $P(Y = y)$

Probability distribution

✺ Give the random variable *S in the 4 sided die, whose range is* {2,3,4,5,6,7,8}, probability distribution of S. $p(s)$ What is **var[S]**?

Motivation for covariance

- $*$ Study the relationship between random variables
- $*$ Note that it's the un-normalized correlation
- **Komarge Exercice Exercity Applications include the fire control** of radar, communicating in the presence of noise.

Covariance

✺The **covariance** of random variables *X* and *Y* is

$cov(X, Y) = E[(X - E[X])(Y - E[Y])]$

^{ Note that}

 $cov(X, X) = E[(X - E[X])^{2}] = var[X]$

A neater form for covariance

✺A neater expression for **covariance** (similar derivation as for variance)

 $cov(X, Y) = E[XY] - E[X]E[Y]$

Correlation coefficient is normalized covariance

$*$ The correlation coefficient is $corr(X, Y) = \frac{cov(X, Y)}{P}$ $\sigma_X \sigma_Y$

 $*$ When X , Y takes on values with equal probability to generate data sets $\{(x,y)\}\$, the correlation coefficient will be as seen in Chapter 2.

Correlation coefficient is normalized covariance

 $*$ The correlation coefficient can also be written as:

 $corr(X, Y) = \frac{E[XY] - E[X]E[Y]}{E[X]E[Y]}$ $\sigma_X \sigma_Y$

Correlation seen from scatter plots

Covariance seen from scatter plots

When correlation coefficient or covariance is zero

Variance of the sum of two random variables

 $var[X + Y] = var[X] + var[Y] + 2cov(X, Y)$

If events X & Y are independent, then

$* E[XY] = E[X]E[Y]$

Proof:

$E[XY] = E[X]E[Y]$

These are equivalent! Uncorrelatedness

$* E[XY] = E[X]E[Y]$

$cov(X, Y) = 0$

 $var[X + Y] = var[X] + var[Y]$

Q: What is this expectation?

- $*$ We toss two fair identical coins A & B independently for three times and 4 times respectively, for each head we earn \$1, we define X is the earning from A and Y is the earning from B. What is $E[XY]$?
- A. 2 B. 3 C. 4

Uncorrelated vs Independent

 $*$ If two random variables are uncorrelated, does this mean they are independent? Investigate the case X takes -1, 0, 1 with equal probability and $Y=X^2$.

Covariance example

It's an underlying concept in principal component analysis in Chapter 10

Towards the weak law of large numbers

- $*$ The weak law says that if we repeat a random experiment many times, the average of the observations will "converge" to the expected value
- $*$ For example, if you repeat the profit example, the average earning will "converge" to $E[X] = 20p-10$
- ✺ The weak law jus:fies using simula:ons (instead of calculation) to estimate the expected values of random variables

Markov's inequality

✺ For any random variable *X* that *only* take*s* $x > 0$ and constant $a > 0$

$$
P(X \ge a) \le \frac{E[X]}{a}
$$

 \equiv For example, if $a = 10$ E[X]

$$
P(X \ge 10E[X]) \le \frac{E[X]}{10E[X]} = 0.1
$$

Proof of Markov's inequality

Chebyshev's inequality

- $*$ For any random variable X and constant $a > 0$ $P(|X - E[X]| \ge a) \le$ $var[X]$ $\overline{a^2}$
- $*$ If we let a = ko where σ = std[X] $P(|X - E[X]| \geq k\sigma) \leq$ 1 $\overline{k^2}$
- $*$ In words, the probability that X is greater than k standard deviation away from the mean is small

Proof of Chebyshev's inequality

 $*$ Given Markov inequality, a>0, x ≥ 0 $P(X \ge a) \le$ $E[X]$ \overline{a}

 $*$ We can rewrite it as *ω* > 0 $P(|U| \geq w) \leq$ $E[|U|]$ $\overline{\overline{w}}$

Proof of Chebyshev's inequality

$$
\ast \text{ If } U = (X - E[X])^2
$$

$$
P(|U| \ge w) \le \frac{E[|U|]}{w} = \frac{E[U]}{w}
$$

Proof of Chebyshev's inequality

■ Apply Markov inequality to $U = (X - E[X])^2$ $P(|U| \geq w) \leq$ $E[|U|]$ $\overline{\overline{w}}$ = $E[U]$ $\overline{\overline{w}}$ = $var[X]$ $\overline{\overline{w}}$

 $*$ Substitute $U = (X - E[X])^2$ and $w = a^2$

$$
P((X - E[X])^2 \ge a^2) \le \frac{var[X]}{a^2} \quad \text{Assume } a > 0
$$

$$
\Rightarrow P(|X - E[X]| \ge a) \le \frac{var[X]}{a^2}
$$

Now we are closer to the law of large numbers

Sample mean and IID samples

- $\mathscr W$ We define the sample mean $\overline{\mathbf X}$ to be the average of **N** random variables $X_1, ..., X_N$.
- \mathscr{W} If $X_1, ..., X_N$ are *independent* and have \vec{a} *identical* probability function $P(x)$

then the numbers randomly generated from them are called **IID** samples

Example mean is a random variable

Sample mean and IID samples

- ✺ Assume we have a set of **IID samples** from *N* random variables X_1 , ..., X_N that have probability function $P(x)$
- \mathscr{L} We use $\overline{\mathbf{X}}$ to denote the **sample mean** of these **IID samples**

$$
\overline{\mathbf{X}} = \frac{\sum_{i=1}^{N} X_i}{N}
$$

Expected value of sample mean of IID random variables

✺ By linearity of expected value

$$
E[\overline{\mathbf{X}}] = E[\frac{\sum_{i=1}^{N} X_i}{N}] = \frac{1}{N} \sum_{i=1}^{N} E[X_i]
$$

Expected value of sample mean of IID random variables

✺ By linearity of expected value

$$
E[\overline{\mathbf{X}}] = E[\frac{\sum_{i=1}^{N} X_i}{N}] = \frac{1}{N} \sum_{i=1}^{N} E[X_i]
$$

Given each *Y* has identical $P(x)$

 $\frac{1}{2}$ Given each X_i has identical $P(x)$

$$
E[\overline{\mathbf{X}}] = \frac{1}{N} \sum_{i=1}^{N} E[X] = E[X]
$$

Variance of sample mean of IID random variables

✺ By the scaling property of variance

$$
var[\overline{\mathbf{X}}] = var[\frac{1}{N} \sum_{i=1}^{N} X_i] = \frac{1}{N^2} var[\sum_{i=1}^{N} X_i]
$$

Variance of sample mean of IID random variables

 $*$ By the scaling property of variance $var[\overline{\mathbf{X}}] = var[$ 1 $\overline{\overline{N}}$ \sum \overline{N} $i=1$ $X_i] = \left(\frac{1}{\lambda t}\right)$ $\frac{1}{N^2}var[\sum$ \overline{N} $i=1$ $[X_i]$

✺ And by independence of these IID random variables N

$$
var[\overline{\mathbf{X}}] = \frac{1}{N^2} \sum_{i=1}^{N} var[X_i]
$$

Variance of sample mean of IID random variables

 $*$ By the scaling property of variance $var[\overline{\mathbf{X}}] = var[$ 1 $\overline{\overline{N}}$ \sum \overline{N} $i=1$ $X_i] = \left(\frac{1}{\lambda t}\right)$ $\frac{1}{N^2}var[\sum$ \overline{N} $i=1$ $[X_i]$

✺ And by independence of these IID random variables N

$$
var[\overline{\mathbf{X}}] = \frac{1}{N^2} \sum_{i=1}^{N} var[X_i]
$$

 $\frac{1}{2}$ Given each X_i has identical $P(x)$, $var[X_i] = var[X]$

$$
var[\overline{\mathbf{X}}] = \frac{1}{N^2} \sum_{i=1}^{N} var[X] = \frac{var[X]}{N}
$$

Expected value and variance of sample mean of IID random variables

 $*$ The expected value of sample mean is the same as the expected value of the distribution

$$
E[\overline{\mathbf{X}}] = E[X]
$$

 $*$ The variance of sample mean is the distribution's variance divided by the sample size N

$$
var[\overline{\mathbf{X}}] = \frac{var[X]}{N}
$$

Weak law of large numbers

- $*$ Given a random variable X with finite variance, probability distribution function $P(x)$ and the sample mean $\overline{\mathbf{X}}$ of size N *.*
- $\frac{1}{2}$ For any positive number $\epsilon > 0$

$$
\lim_{N \to \infty} P(|\overline{\mathbf{X}} - E[X]| \ge \epsilon) = 0
$$

EXECTE: That is: the value of the mean of IID samples is very close with high probability to the expected value of the population when sample size is very large

✺ Apply Chebyshev's inequality $P(|\overline{\mathbf{X}} - E[\overline{\mathbf{X}}]| \geq \epsilon) \leq$ $var[\overline{\mathbf{X}}]$ $\overline{\epsilon^2}$

✺ Apply Chebyshev's inequality <p>∴</p>\n$(-1)^{n} - (-1)^{n} = \epsilon^{2}\n= \frac{var[X]}{N}$\n<p>Substitute</p>\n$E[\overline{\mathbf{X}}] = E[X] \text{ and } var[\overline{\mathbf{X}}] = \frac{var[X]}{N}$ $\overline{\overline{N}}$ $P(|\overline{\mathbf{X}} - E[\overline{\mathbf{X}}]| \geq \epsilon) \leq$ $var[\overline{\mathbf{X}}]$ $\overline{\epsilon^2}$

✺ Apply Chebyshev's inequality <p>∴</p>\n$(-1)^{n} - (-1)^{n} = \epsilon^{2}\n= \frac{var[X]}{N}$\n<p>Substitute</p>\n$E[\overline{\mathbf{X}}] = E[X] \text{ and } var[\overline{\mathbf{X}}] = \frac{var[X]}{N}$ $\overline{\overline{N}}$ $P(|\overline{\mathbf{X}} - E[\mathbf{X}]| \geq \epsilon) \leq$ $var[\mathbf{X}]$ $\overline{N\epsilon^2}$ $P(|\overline{\mathbf{X}} - E[\overline{\mathbf{X}}]| \geq \epsilon) \leq$ $var[\overline{\mathbf{X}}]$ $\overline{\epsilon^2}$

✺ Apply Chebyshev's inequality <p>∴</p>\n$(-1)^{n} - (-1)^{n} = \epsilon^{2}\n= \frac{var[X]}{N}$\n<p>Substitute</p>\n$E[\overline{\mathbf{X}}] = E[X] \text{ and } var[\overline{\mathbf{X}}] = \frac{var[X]}{N}$ $\overline{\overline{N}}$ $P(|\overline{\mathbf{X}} - E[\mathbf{X}]| \geq \epsilon) \leq$ $var[\mathbf{X}]$ $\overline{N\epsilon^2}$ $N\to\infty$ $P(|\overline{\mathbf{X}} - E[\overline{\mathbf{X}}]| \geq \epsilon) \leq$ $var[\overline{\mathbf{X}}]$ $\overline{\epsilon^2}$ 0

✺ Apply Chebyshev's inequality <p>∴</p>\n$(-1)^{n} - (-1)^{n} = \epsilon^{2}\n= \frac{var[X]}{N}$\n<p>Substitute</p>\n$E[\overline{\mathbf{X}}] = E[X] \text{ and } var[\overline{\mathbf{X}}] = \frac{var[X]}{N}$ $\overline{\overline{N}}$ $P(|\overline{\mathbf{X}} - E[\mathbf{X}]| \geq \epsilon) \leq$ $var[\mathbf{X}]$ $\overline{N\epsilon^2}$ $N\to\infty$ $P(|\overline{\mathbf{X}} - E[\overline{\mathbf{X}}]| \geq \epsilon) \leq$ $var[\overline{\mathbf{X}}]$ $\overline{\epsilon^2}$ $lim\n$ $N\rightarrow\infty$ $P(|\overline{\mathbf{X}} - E[X]| \geq \epsilon) = 0$ 0

Applications of the Weak law of <u>large numbers</u>

Applications of the Weak law of large numbers

EXECTE: The law of large numbers *justifies using* **simulations** (instead of calculation) to estimate the expected values of random variables

$$
\lim_{N \to \infty} P(|\overline{\mathbf{X}} - E[X]| \ge \epsilon) = 0
$$

EXECTE: The law of large numbers also *justifies using* **histogram** of large random samples to approximate the probability distribution function $\overline{P}(x)$, see proof on Pg. 353 of the textbook by DeGroot, et al.

Histogram of large random IID samples approximates the probability distribution

- $*$ The law of large numbers justifies using histograms to approximate the probability distribution. Given \boldsymbol{N} IID random variables X_i ,
	- \ldots, X_N

 $*$ According to the law of large numbers

$$
\overline{\mathbf{Y}} = \frac{\sum_{i=1}^{N} Y_i}{N} \xrightarrow{N \to \infty} E[Y_i]
$$

 $*$ As we know for indicator function

 $E[Y_i] = P(c_1 \leq X_i < c_2) = P(c_1 \leq X < c_2)$

Simulation of the sum of two-dice

✺ hlp://www.randomservices.org/ random/apps/DiceExperiment.html

Probability using the property of Independence: Airline overbooking

✺ An airline has a flight with **s** seats. They always sell **t** (**t**>s) tickets for this flight. If ticket holders show up independently with probability **p**, what is the probability that the flight is overbooked?

$$
\mathsf{P}(\text{ overbooked}) = \sum_{u=s+1}^{t} C(t,u) p^u (1-p)^{t-u}
$$

Simulation of airline overbooking

- ✺ An airline has a flight with **7** seats. They always sell 12 tickets for this flight. If ticket holders show up independently with probability **p**, estimate the following values
	- ✺ Expected value of the number of :cket holders who show up
	- ✺ Probability that the flight being overbooked
	- ✺ Expected value of the number of :cket holders who can't fly due to the flight is overbooked.

Conditional expectation

Expected value of X conditioned on event A:

$$
E[X|A] = \sum_{x \in D(X)} xP(X = x|A)
$$

 $*$ Expected value of the number of ticketholders not flying

$$
E[NF|overbooked] = \sum_{u=s+1}^{t} (u-s) \frac{\binom{t}{u} p^u (1-p)^{t-u}}{\sum_{v=s+1}^{t} \binom{t}{v} p^v (1-p)^{t-v}}
$$

Simulate the arrival

✺ Expected value of the number of :cket holders who show up

nt=100000, t= 12, s=7, p=0.1, 0.2, … 1.0

Num of tickets (t) Num of tickets (t)

→ Num of trials (*nt*)

We generate a matrix of random numbers from uniform distribution in $[0,1]$, Any number < p is **considered an arrival**

Simulate the arrival

✺ Expected value of the number of :cket holders who show up **Expected value of the number of ticket holders who show up**

nt=100000, t= 12, s=7, p=0.1, 0.2, … 1.0

Probability of arrival (p)

Simulate the expected probability of **overbooking**

✺ Expected probability of the flight being overbooked

t= 12, s=7, p=0.1, 0.2, … 1.0

✺ **Expected probability** is equal to the **expected value of indicator function**. Whenever we have Num of arrival > Num of seats, we mark it with an indicator function. Then estimate with the sample mean of indicator functions.

Simulate the expected probability of **overbooking**

✺ Expected probability of the flight being overbooked

> *nt=100000,* t= 12, s=7, *p=0.1, 0.2, … 1.0*

Expected probability of flight being overbooked

Probability of arrival (p)

Simulate the expected value of the number of grounded ticket holders given overbooked

✺ Expected value of the number of ticket holders who can't fly due to the flight being overbooked

> *Nt=200000, t= 12, s=7, p=0.1, 0.2, … 1.0*

Expected value of the number of ticket holder not flying given overbooked

Probability of arrival (p)

Assignments

_{**☀} Continue to work on HW4**</sub>

✺ Read Module Week 5

$*$ Next time: Continuous random variable, classic known probability distributions

Additional References

- ✺ Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- ✺ Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

