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“The	weak	law	of	large	
numbers	gives	us	a	very	
valuable	way	of	thinking	
about	expecta:ons.”	---Prof.	
Forsythe		
	

Hongye	Liu,	Teaching	Assistant	Prof,	CS361,	UIUC,	02.23.2021	

Credit:	wikipedia	



Last	time	

✺ Random	Variable		
✺ Expected	value	
✺ Variance	&	covariance	



Objectives	

✺ Random	Variable		
✺ Review		
✺ Covariance	
✺ The	weak	law	of	large	numbers	
✺ Simula=on	&	example	of	airline	
overbooking	



Expected	value	

✺ The	expected	value	(or	expecta,on)	
of	a	random	variable	X	is	

The	expected	value	is	a	weighted	sum	
of	all	the	values	X	can	take	

	

	

	

E[X] =
∑

x

xP (x)



Linearity	of	Expectation	



Expected	value	of	a	function	of	X 

	

	



Q:	

What	is	E[E[X]]?			
	
A.  E[X]	
B.  0	
C.  Can’t	be	sure	



Probability	distribution	

✺ Given	the	random	variable	X,	what	is		

E[2|X|	+1]?	

X 1	

1/2	

0	

p(x) P (X = x)

-1	

A. 		0	
B. 		1	
C. 		2	
D. 		3	
E. 		5	



Probability	distribution	

✺ Given	the	random	variable	S	in	the	4-
sided	die,	whose	range	is	{2,3,4,5,6,7,8},	
probability	distribu:on	of	S.	

S	

2	 3	 4	 5	 6	 7	 8	

p(s)

1/16	

What	is	E[S]	?	

A. 	4	
B. 	5	
C. 	6	



A	neater	expression	for	variance 

	

	

var[X] = E[X2]− E[X]2

var[X] = E[(X − E[X])2]

✺ Variance	of	Random	Variable	X	is	
defined	as:		

✺ It’s	the	same	as:	



Probability	distribution	and	
cumulative	distribution	
✺ Given	the	random	variable	X,	what	is		

var[2|X|	+1]?	

X 1	

1/2	

0	

p(x) P (X = x)

-1	

A. 		0	
B. 		1	
C. 		2	
D. 		3	
E. 		-1	



Probability	distribution	

✺ Given	the	random	variable	X,	what	is		

var[2|X|	+1]?		Let	Y	=	2|X|+1	

X 3	

1	

0	

P (Y = y)p(y)



Probability	distribution	

✺ Give	the	random	variable	S	in	the	4-
sided	die,	whose	range	is	{2,3,4,5,6,7,8},	
probability	distribu:on	of	S.	

S	
2	 3	 4	 5	 6	 7	 8	

p(s)

1/16	

What	is	var[S]	?	



Motivation	for	covariance	

✺ Study	the	rela:onship	between	
random	variables	

✺ Note	that	it’s	the	un-normalized	
correla:on	

✺ Applica:ons	include	the	fire	control	
of	radar,	communica:ng	in	the	
presence	of	noise.		



Covariance	

✺ The	covariance	of	random	
variables	X	and	Y	is	

✺ Note	that	

cov(X, Y ) = E[(X − E[X])(Y − E[Y ])]

cov(X,X) = E[(X − E[X])2] = var[X]



A	neater	form	for	covariance	

✺ A	neater	expression	for	
covariance	(similar	deriva:on	as	
for	variance)	

cov(X, Y ) = E[XY ]− E[X]E[Y ]



Correlation	coefficient	is	normalized		
covariance	
✺ The	correla:on	coefficient	is	

	

✺ When	X, Y	takes	on	values	with	equal	
probability	to	generate	data	sets	
{(x,y)},	the	correla:on	coefficient	will	
be	as	seen	in	Chapter	2.	

corr(X, Y ) =
cov(X, Y )

σXσY



Correlation	coefficient	is	normalized		
covariance	
✺ The	correla:on	coefficient	can	also	be	
wrilen	as:	

	 corr(X, Y ) =
E[XY ]− E[X]E[Y ]

σXσY



Correlation	seen	from	scatter	plots	

Posi:ve		
correla:on	
	

Nega:ve		
correla:on	

Zero		
Correla:on	
	

Credit:	
Prof.Forsyth	



Covariance	seen	from	scatter	plots	

Posi:ve		
Covariance	
	

Nega:ve		
Covariance	

Zero		
Covariance	
	

Credit:	
Prof.Forsyth	



When	correlation	coefficient	or	
covariance	is	zero		
✺  The	covariance	is	0!	

✺  That	is:	

✺  This	is	a	necessary	property	of	
independence	of	random	variables	*	(not	
equal	to	independence)	

	

E[XY ]− E[X]E[Y ] = 0

E[XY ] = E[X]E[Y ]



Variance	of	the	sum	of	two	random	
variables	

var[X + Y ] = var[X] + var[Y ] + 2cov(X, Y )



If	events	X	&Y	are	independent,	
then	

✺  																																														E[XY ] = E[X]E[Y ]



Proof:	

	 E[XY ] = E[X]E[Y ]



These	are	equivalent!	
Uncorrelatedness	

✺  																																														E[XY ] = E[X]E[Y ]

cov(X, Y ) = 0

var[X + Y ] = var[X] + var[Y ]



Q:	What	is	this	expectation?	

✺ We	toss	two	fair	iden:cal	coins	A	&	B	
independently	for	three	:mes	and	4	:mes	
respec:vely,	for	each	head	we	earn	$1,	we	
define	X	is	the	earning	from	A	and	Y	is	the	
earning	from	B.	What	is	E[XY]?	

					A.	2							B.	3								C.	4																																										



Uncorrelated		vs	Independent	

✺  If	two	random	variables	are	
uncorrelated,	does	this	mean	they	are	
independent?	Inves:gate	the	case	X	
takes	-1,	0,	1	with	equal	probability	
and	Y=X2.	



Covariance	example	

It’s	an	underlying	concept	in	principal	
component	analysis	in	Chapter	10																																						



Towards	the	weak	law	of	large	
numbers	
✺  The	weak	law	says	that	if	we	repeat	a	random	

experiment	many	:mes,	the	average	of	the	
observa:ons	will	“converge”	to	the	expected	value	

✺  For	example,	if	you	repeat	the	profit	example,	the	
average	earning	will	“converge”	to	E[X]=20p-10		

✺  The	weak	law	jus:fies	using	simula:ons	(instead	of	
calcula:on)		to	es:mate	the	expected	values	of	
random	variables	



Markov’s	inequality	

✺  For	any	random	variable	X that only takes 
x ≥ 0	and	constant	a	>	0	

	

✺  For	example,	if	a	=	10	E[X]		
		

		

P (X ≥ a) ≤
E[X]

a

P (X ≥ 10E[X]) ≤
E[X]

10E[X]
= 0.1



Proof	of	Markov’s	inequality	



Chebyshev’s	inequality	

✺  For	any	random	variable	X	and	constant	a	>0	

	

✺  If	we	let	a	=	kσ	where	σ	=	std[X]	

✺  In	words,	the	probability	that	X	is	greater	than	
k	standard	devia:on	away	from	the	mean	is	
small		
		

		

P (|X − E[X]| ≥ kσ) ≤
1

k2

P (|X − E[X]| ≥ a) ≤
var[X]

a2



Proof	of	Chebyshev’s	inequality	

✺  Given	Markov	inequality,	a>0,	x	≥	0	

✺  We	can		rewrite	it	as		

ω	>	0	

	

P (X ≥ a) ≤
E[X]

a

P (|U | ≥ w) ≤
E[|U |]

w



Proof	of	Chebyshev’s	inequality	

✺  If		 U = (X − E[X])2

P (|U | ≥ w) ≤
E[|U |]

w
=

E[U ]

w



Proof	of	Chebyshev’s	inequality	
✺  Apply	Markov	inequality	to		

✺  Subs:tute																																				and		

	

U = (X − E[X])2

P (|U | ≥ w) ≤
E[|U |]

w
=

E[U ]

w
=

var[X]

w

U = (X − E[X])2 w = a
2

P ((X − E[X])2 ≥ a
2) ≤

var[X]

a2
a > 0Assume		

⇒ P (|X − E[X]| ≥ a) ≤
var[X]

a2



Now	we	are	closer	to	the	law	of	large	
numbers	



Sample	mean	and	IID	samples		

✺  We	define	the	sample	mean					to	be	the	
average	of	N	random	variables	X1, …, XN.		

✺  If	X1, …, XN are	independent	and	have	
iden-cal	probability	func:on		

					then	the	numbers	randomly	generated	from	
	them	are	called	IID	samples	

✺  The	sample	mean	is	a	random	variable	

P (x)

X



Sample	mean	and	IID	samples		

✺  Assume	we	have	a	set	of	IID	samples	from	N	
random	variables	X1, …, XN	that	have	
probability	func:on	

✺  We	use								to	denote	the	sample	mean	of	
these	IID	samples	

P (x)

X =

∑
N

i=1
Xi

N

X



Expected	value	of	sample	mean	of	
IID	random	variables	
✺  By	linearity	of	expected	value	

E[X] = E[

∑
N

i=1
Xi

N
] =

1

N

N∑

i=1

E[Xi]



Expected	value	of	sample	mean	of	
IID	random	variables	
✺  By	linearity	of	expected	value	

✺  Given	each	Xi	has	iden:cal		P (x)

E[X] = E[

∑
N

i=1
Xi

N
] =

1

N

N∑

i=1

E[Xi]

E[X] =
1

N

N∑

i=1

E[X] = E[X]



Variance	of	sample	mean	of	IID	
random	variables	
✺  By	the	scaling	property	of	variance	

var[X] = var[
1

N

N∑

i=1

Xi] =
1

N2
var[

N∑

i=1

Xi]



Variance	of	sample	mean	of	IID	
random	variables	
✺  By	the	scaling	property	of	variance	

✺  And	by	independence	of	these	IID	random	
variables	

var[X] = var[
1

N

N∑

i=1

Xi] =
1

N2
var[

N∑

i=1

Xi]

var[X] =
1

N2

N∑

i=1

var[Xi]



Variance	of	sample	mean	of	IID	
random	variables	
✺  By	the	scaling	property	of	variance	

✺  And	by	independence	of	these	IID	random	
variables	

✺  Given	each	Xi	has	iden:cal										,		

var[X] = var[
1

N

N∑

i=1

Xi] =
1

N2
var[

N∑

i=1

Xi]

var[X] =
1

N2

N∑

i=1

var[Xi]

P (x) var[Xi] = var[X]

var[X] =
1

N2

N∑

i=1

var[X] =
var[X]

N



Expected	value	and	variance		of	sample	
mean	of	IID	random	variables	

✺  The	expected	value	of	sample	mean	is	the	
same	as	the	expected	value	of	the	distribu:on	

✺  The	variance	of	sample	mean	is	the	
distribu:on’s	variance	divided	by	the	sample	
size	N	

var[X] =
var[X]

N

E[X] = E[X]



Weak	law	of	large	numbers	

✺  Given	a	random	variable	X	with	finite	variance,	
probability	distribu:on	func:on											and	the	
sample	mean						of	size	N.	

✺  For	any	posi:ve	number			

✺  That	is:	the	value	of	the	mean	of	IID	samples	is	very	
close	with	high	probability	to	the	expected	value	of	the	
popula:on	when	sample	size	is	very	large	

P (x)
X

lim
N→∞

P (|X− E[X]| ≥ ϵ) = 0

ϵ > 0



Proof	of	Weak	law	of	large	numbers	

✺  Apply	Chebyshev’s	inequality	

P (|X− E[X]| ≥ ϵ) ≤
var[X]

ϵ2



Proof	of	Weak	law	of	large	numbers	

✺  Apply	Chebyshev’s	inequality	

✺  Subs:tute																												and		E[X] = E[X] var[X] =
var[X]

N

P (|X− E[X]| ≥ ϵ) ≤
var[X]

ϵ2



Proof	of	Weak	law	of	large	numbers	

✺  Apply	Chebyshev’s	inequality	

✺  Subs:tute																												and		E[X] = E[X] var[X] =
var[X]

N

P (|X− E[X]| ≥ ϵ) ≤
var[X]

Nϵ2

P (|X− E[X]| ≥ ϵ) ≤
var[X]

ϵ2



Proof	of	Weak	law	of	large	numbers	

✺  Apply	Chebyshev’s	inequality	

✺  Subs:tute																												and		E[X] = E[X] var[X] =
var[X]

N

P (|X− E[X]| ≥ ϵ) ≤
var[X]

Nϵ2

P (|X− E[X]| ≥ ϵ) ≤
var[X]

ϵ2

N → ∞

0	



Proof	of	Weak	law	of	large	numbers	

✺  Apply	Chebyshev’s	inequality	

✺  Subs:tute																												and		E[X] = E[X] var[X] =
var[X]

N

P (|X− E[X]| ≥ ϵ) ≤
var[X]

Nϵ2

P (|X− E[X]| ≥ ϵ) ≤
var[X]

ϵ2

lim
N→∞

P (|X− E[X]| ≥ ϵ) = 0

N → ∞

0	



Applications	of	the	Weak	law	of	
large	numbers	



Applications	of	the	Weak	law	of	
large	numbers	
✺  The	law	of	large	numbers	jus-fies	using	

simula-ons	(instead	of	calcula:on)		to	es:mate	
the	expected	values	of	random	variables		

✺  The	law	of	large	numbers	also	jus-fies	using	
histogram	of	large	random	samples	to	
approximate	the	probability	distribu:on	
func:on											,	see	proof	on	
Pg.	353	of	the	textbook	by	DeGroot,	et	al.	

lim
N→∞

P (|X− E[X]| ≥ ϵ) = 0

P (x)



Histogram	of	large	random	IID	samples	
approximates	the	probability	distribution	

✺  The	law	of	large	numbers	jus:fies	using	
histograms	to	approximate	the	probability	
distribu:on.	Given	N	IID	random	variables	X1, 
…, XN	
✺  According	to	the	law	of	large	numbers 

✺  As	we	know	for	indicator	func:on	
	E[Yi] = P (c1 ≤ Xi < c2)= P (c1 ≤ X < c2)

Y =

∑
N

i=1
Yi

N

N → ∞
E[Yi]



Simulation	of	the	sum	of	two-dice	

✺  hlp://www.randomservices.org/
random/apps/DiceExperiment.html	



Probability	using	the	property	of	
Independence:	Airline	overbooking		

✺  An	airline	has	a	flight	with	s	seats.	They	
always	sell	t	(t>s)	:ckets	for	this	flight.	If	
:cket	holders	show	up	independently	
with	probability	p,	what	is	the	probability	
that	the	flight	is	overbooked	?	

P(	overbooked)		=
t∑

u=s+1

C(t, u)pu(1− p)t−u



Simulation	of	airline	overbooking	

✺  An	airline	has	a	flight	with	7	seats.	They	
always	sell	12	:ckets	for	this	flight.	If	:cket	
holders	show	up	independently	with	
probability	p,	es:mate	the	following	values		
✺  Expected	value	of	the	number	of	:cket	

holders	who	show	up	
✺  Probability	that	the	flight	being	overbooked	
✺  Expected	value	of	the	number	of	:cket	

holders	who	can’t	fly	due	to	the	flight	is	
overbooked.	



Conditional	expectation	

✺  Expected	value	of	X	condi:oned	on	event	A:	

✺  Expected	value	of	the	number	of	:cketholders	
not	flying	

E[X|A] =
∑

x∈D(X)

xP (X = x|A)

t
∑

u=s+1

(u− s)

(

t

u

)

p
u(1− p)t−u

∑

t

v=s+1

(

t

v

)

pv(1− p)t−v
E[NF |overbooked] =



Simulate	the	arrival	

✺  Expected	value	of	the	number	of	:cket	
holders	who	show	up	
nt=100000,	t=	12,	s=7,	p=0.1,	0.2,	…	1.0	

.	

.	

.	

…		
Num	of	trials		(nt)	

N
um

	o
f	:

ck
et
s	(
t)
	

We	generate	a	matrix	of	
random	numbers	from	
uniform	distribu:on	in	
[0,1],		
Any	number	<	p	is	
considered	an	arrival	



Simulate	the	arrival	

✺  Expected	value	of	the	number	of	:cket	
holders	who	show	up	
nt=100000,	t=	12,	
	s=7,	p=0.1,	0.2,	…	1.0	
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Expected value of the number of ticket holders who show up
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Simulate	the	expected	probability	of	
overbooking	
✺  Expected	probability	of	the	flight	being	

overbooked	

✺  Expected	probability	is	equal	to	the	expected	
value	of	indicator	func,on.	Whenever	we	
have	Num	of	arrival	>	Num	of	seats,	we	mark	it	
with	an	indicator	func:on.	Then	es:mate	with	
the	sample	mean	of	indicator	func:ons.	

	

t=	12,	s=7,	p=0.1,	0.2,	…	1.0	



Simulate	the	expected	probability	of	
overbooking	
✺  Expected	

probability	of	the	
flight	being	
overbooked	

	
nt=100000,	
t=	12,	s=7,		
p=0.1,	0.2,	…	1.0	
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Simulate	the	expected	value	of	the	number	of	
grounded	ticket	holders	given	overbooked	

✺  Expected	value	of	
the	number	of	:cket	
holders	who	can’t	
fly	due	to	the	flight	
being	overbooked	

Nt=200000,	
t=	12,	s=7,		
p=0.1,	0.2,	…	1.0	
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Assignments	

✺ Con:nue	to	work	on	HW4	

✺ Read	Module	Week	5	

✺ Next	:me:	Con:nuous	random	
variable,	classic	known	probability	
distribu:ons	

	



Additional	References	

✺  Charles	M.	Grinstead	and	J.	Laurie	Snell	
"Introduc:on	to	Probability”		

✺ Morris	H.	Degroot	and	Mark	J.	Schervish	
"Probability	and	Sta:s:cs”	



See	you	next	time	

See 
You! 


