

"The weak law of large numbers gives us a very valuable way of thinking about expectations." --- Prof. Forsythe

Credit: wikipedia

Last time

- ** Random Variable
 - ****** Expected value
 - ****** Variance & covariance

Objectives

- ** Random Variable
 - ***** Review
 - ***** Covariance
 - ** The weak law of large numbers
 - ** Simulation & example of airline overbooking

Expected value

** The **expected value** (or **expectation**) of a random variable X is

$$E[X] = \sum_{x} x P(x)$$

The expected value is a weighted sum of **all** the values X can take

Linearity of Expectation

Expected value of a function of X

Q:

What is E[E[X]]?

A. E[X]

B. 0

C. Can't be sure

Probability distribution

Given the random variable **X**, what is

$$E[2|X|+1]$$
?

A. 0

B. 1

C. 2

D. 3

E. 5

Probability distribution

Given the random variable S in the 4sided die, whose range is {2,3,4,5,6,7,8},
probability distribution of S. What is E[S]?

A neater expression for variance

** Variance of Random Variable X is defined as:

$$var[X] = E[(X - E[X])^2]$$

It's the same as:

$$var[X] = E[X^2] - E[X]^2$$

Probability distribution and cumulative distribution

Given the random variable **X**, what is

A. 0

B. 1

C. 2

D. 3

E. -1

Probability distribution

Given the random variable **X**, what is

$$var[2|X| +1]$$
? Let $Y = 2|X| +1$

Probability distribution

Give the random variable S in the 4sided die, whose range is {2,3,4,5,6,7,8}, probability distribution of S.

Motivation for covariance

- Study the relationship between random variables
- ** Note that it's the un-normalized correlation
- ** Applications include the fire control of radar, communicating in the presence of noise.

Covariance

** The **covariance** of random variables X and Y is

$$cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$

****** Note that

$$cov(X, X) = E[(X - E[X])^2] = var[X]$$

A neater form for covariance

** A neater expression for covariance (similar derivation as for variance)

$$cov(X,Y) = E[XY] - E[X]E[Y]$$

Correlation coefficient is normalized covariance

* The correlation coefficient is

$$corr(X, Y) = \frac{cov(X, Y)}{\sigma_X \sigma_Y}$$

** When X, Y takes on values with equal probability to generate data sets $\{(x,y)\}$, the correlation coefficient will be as seen in Chapter 2.

Correlation coefficient is normalized covariance

** The correlation coefficient can also be written as:

$$corr(X, Y) = \frac{E[XY] - E[X]E[Y]}{\sigma_X \sigma_Y}$$

Correlation seen from scatter plots

Covariance seen from scatter plots

When correlation coefficient or covariance is zero

- ****** The covariance is 0!
- # That is:

$$E[XY] - E[X]E[Y] = 0$$

$$E[XY] = E[X]E[Y]$$

** This is a necessary property of independence of random variables * (not equal to independence)

Variance of the sum of two random variables

$$var[X + Y] = var[X] + var[Y] + 2cov(X, Y)$$

If events X &Y are independent, then

$$*$$
 $E[XY] = E[X]E[Y]$

Proof:

$$E[XY] = E[X]E[Y]$$

These are equivalent! Uncorrelatedness

$$*$$
 $E[XY] = E[X]E[Y]$

$$cov(X,Y) = 0$$

$$var[X + Y] = var[X] + var[Y]$$

Q: What is this expectation?

** We toss two fair identical coins A & B independently for three times and 4 times respectively, for each head we earn \$1, we define X is the earning from A and Y is the earning from B. What is E[XY]?

A. 2 B. 3 C. 4

Uncorrelated vs Independent

** If two random variables are uncorrelated, does this mean they are independent? Investigate the case X takes -1, 0, 1 with equal probability and Y=X².

Covariance example

It's an underlying concept in principal component analysis in Chapter 10

Towards the weak law of large numbers

- The weak law says that if we repeat a random experiment many times, the average of the observations will "converge" to the expected value
- ** For example, if you repeat the profit example, the average earning will "converge" to E[X]=20p-10
- ** The weak law justifies using simulations (instead of calculation) to estimate the expected values of random variables

Markov's inequality

** For any random variable X that *only* takes $x \ge 0$ and constant a > 0

$$P(X \ge a) \le \frac{E[X]}{a}$$

** For example, if a = 10 E[X]

$$P(X \ge 10E[X]) \le \frac{E[X]}{10E[X]} = 0.1$$

Proof of Markov's inequality

Chebyshev's inequality

** For any random variable X and constant a > 0

$$P(|X - E[X]| \ge a) \le \frac{var[X]}{a^2}$$

** If we let a = k σ where σ = std[X]

$$P(|X - E[X]| \ge k\sigma) \le \frac{1}{k^2}$$

** In words, the probability that X is greater than k standard deviation away from the mean is small

Proof of Chebyshev's inequality

** Given Markov inequality, a>0, x \geq 0

$$P(X \ge a) \le \frac{E[X]}{a}$$

* We can rewrite it as

$$\omega > 0$$

$$P(|U| \ge w) \le \frac{E[|U|]}{w}$$

Proof of Chebyshev's inequality

* If
$$U = (X - E[X])^2$$

$$P(|U| \ge w) \le \frac{E[|U|]}{w} = \frac{E[U]}{w}$$

Proof of Chebyshev's inequality

** Apply Markov inequality to $U = (X - E[X])^2$

$$P(|U| \ge w) \le \frac{E[|U|]}{w} = \frac{E[U]}{w} = \frac{var[X]}{w}$$

** Substitute $U = (X - E[X])^2$ and $w = a^2$

$$P((X-E[X])^2 \geq a^2) \leq \frac{var[X]}{a^2} \quad \text{Assume } a > 0$$

$$\Rightarrow P(|X - E[X]| \ge a) \le \frac{var[X]}{a^2}$$

Now we are closer to the law of large numbers

Sample mean and IID samples

- ** We define the sample mean \mathbf{X} to be the average of \mathbf{N} random variables $X_1, ..., X_N$.
- ** If X_I , ..., X_N are *independent* and have *identical* probability function P(x)
 - then the numbers randomly generated from them are called **IID** samples
- ** The sample mean is a random variable

Sample mean and IID samples

- ** Assume we have a set of **IID samples** from **N** random variables $X_1, ..., X_N$ that have probability function P(x)
- ** We use $\overline{\mathbf{X}}$ to denote the sample mean of these IID samples

$$\overline{\mathbf{X}} = \frac{\sum_{i=1}^{N} X_i}{N}$$

Expected value of sample mean of IID random variables

** By linearity of expected value

$$E[\overline{\mathbf{X}}] = E\left[\frac{\sum_{i=1}^{N} X_i}{N}\right] = \frac{1}{N} \sum_{i=1}^{N} E[X_i]$$

Expected value of sample mean of IID random variables

By linearity of expected value

$$E[\overline{\mathbf{X}}] = E\left[\frac{\sum_{i=1}^{N} X_i}{N}\right] = \frac{1}{N} \sum_{i=1}^{N} E[X_i]$$

** Given each X_i has identical P(x)

$$E[\overline{\mathbf{X}}] = \frac{1}{N} \sum_{i=1}^{N} E[X] = E[X]$$

Variance of sample mean of IID random variables

** By the scaling property of variance

$$var[\overline{\mathbf{X}}] = var[\frac{1}{N} \sum_{i=1}^{N} X_i] = \frac{1}{N^2} var[\sum_{i=1}^{N} X_i]$$

Variance of sample mean of IID random variables

** By the scaling property of variance

$$var[\overline{\mathbf{X}}] = var[\frac{1}{N} \sum_{i=1}^{N} X_i] = \underbrace{\frac{1}{N^2}} var[\sum_{i=1}^{N} X_i]$$

** And by independence of these IID random variables N

$$var[\overline{\mathbf{X}}] = \frac{1}{N^2} \sum_{i=1}^{N} var[X_i]$$

Variance of sample mean of IID random variables

** By the scaling property of variance

$$var[\overline{\mathbf{X}}] = var[\frac{1}{N} \sum_{i=1}^{N} X_i] = \underbrace{\frac{1}{N^2}} var[\sum_{i=1}^{N} X_i]$$

** And by independence of these IID random variables N

$$var[\overline{\mathbf{X}}] = \frac{1}{N^2} \sum_{i=1}^{N} var[X_i]$$

Given each X_i has identical P(x), $var[X_i] = var[X]$

$$var[\overline{\mathbf{X}}] = \frac{1}{N^2} \sum_{i=1}^{N} var[X] = \frac{var[X]}{N}$$

Expected value and variance of sample mean of IID random variables

** The expected value of sample mean is the same as the expected value of the distribution

$$E[\overline{\mathbf{X}}] = E[X]$$

** The variance of sample mean is the distribution's variance divided by the sample size N

$$var[\overline{\mathbf{X}}] = \frac{var[X]}{N}$$

Weak law of large numbers

- ** Given a random variable X with finite variance, probability distribution function P(x) and the sample mean $\overline{\mathbf{X}}$ of size \emph{N} .
- ** For any positive number $\epsilon > 0$

$$\lim_{N \to \infty} P(|\overline{\mathbf{X}} - E[X]| \ge \epsilon) = 0$$

** That is: the value of the mean of **IID** samples is very close with high probability to the expected value of the population when sample size is very large

** Apply Chebyshev's inequality

$$P(|\overline{\mathbf{X}} - E[\overline{\mathbf{X}}]| \ge \epsilon) \le \frac{var[\mathbf{X}]}{\epsilon^2}$$

** Apply Chebyshev's inequality

** Apply Chebyshev's inequality

$$P(|\overline{\mathbf{X}} - E[\mathbf{X}]| \ge \epsilon) \le \frac{var[\mathbf{X}]}{N\epsilon^2}$$

* Apply Chebyshev's inequality

$$P(|\overline{\mathbf{X}} - E[\overline{\mathbf{X}}]| \ge \epsilon) \le \frac{var[\mathbf{X}]}{\epsilon^2}$$

 $** Substitute $E[\overline{\mathbf{X}}] = E[X]$ and $var[\overline{\mathbf{X}}] = \frac{var[X]}{N}$$

$$P(|\overline{\mathbf{X}} - E[\mathbf{X}]| \ge \epsilon) \le \frac{var[\mathbf{X}]}{N\epsilon^2} \xrightarrow[N \to \infty]{} \mathbf{0}$$

** Apply Chebyshev's inequality

$$P(|\overline{\mathbf{X}} - E[\overline{\mathbf{X}}]| \ge \epsilon) \le \frac{var[\mathbf{X}]}{\epsilon^2}$$

 $\# \ \ \text{Substitute} \ E[\overline{\mathbf{X}}] = E[X] \ \ \text{and} \ var[\overline{\mathbf{X}}] = \frac{var[X]}{N}$

$$P(|\overline{\mathbf{X}} - E[\mathbf{X}]| \ge \epsilon) \le \frac{var[\mathbf{X}]}{N\epsilon^2} \xrightarrow[N \to \infty]{} \mathbf{0}$$

$$\lim_{N \to \infty} P(|\overline{\mathbf{X}} - E[X]| \ge \epsilon) = 0$$

Applications of the Weak law of large numbers

Applications of the Weak law of large numbers

** The law of large numbers justifies using simulations (instead of calculation) to estimate the expected values of random variables

$$\lim_{N \to \infty} P(|\overline{\mathbf{X}} - E[X]| \ge \epsilon) = 0$$

** The law of large numbers also *justifies using histogram* of large random samples to approximate the probability distribution function P(x), see proof on Pg. 353 of the textbook by DeGroot, et al.

Histogram of large random IID samples approximates the probability distribution

** The law of large numbers justifies using histograms to approximate the probability distribution. Given **N** IID random variables X_{I} ,

$$\dots$$
, X_N

** According to the law of large numbers

$$\overline{\mathbf{Y}} = \frac{\sum_{i=1}^{N} Y_i}{N} \xrightarrow{N \to \infty} E[Y_i]$$

* As we know for indicator function

$$E[Y_i] = P(c_1 \le X_i < c_2) = P(c_1 \le X < c_2)$$

Simulation of the sum of two-dice

** http://www.randomservices.org/
random/apps/DiceExperiment.html

Probability using the property of Independence: Airline overbooking

** An airline has a flight with **s** seats. They always sell **t** (**t**>**s**) tickets for this flight. If ticket holders show up independently with probability **p**, what is the probability that the flight is overbooked?

P(overbooked) =
$$\sum_{u=s+1}^{t} C(t,u)p^{u}(1-p)^{t-u}$$

Simulation of airline overbooking

- ** An airline has a flight with **7** seats. They always sell 12 tickets for this flight. If ticket holders show up independently with probability **p**, estimate the following values
 - * Expected value of the number of ticket holders who show up
 - * Probability that the flight being overbooked
 - ** Expected value of the number of ticket holders who can't fly due to the flight is overbooked.

Conditional expectation

Expected value of X conditioned on event A:

$$E[X|A] = \sum_{x \in D(X)} xP(X = x|A)$$

** Expected value of the number of ticketholders not flying

$$E[NF|overbooked] = \sum_{u=s+1}^{t} (u-s) \frac{\binom{t}{u} p^{u} (1-p)^{t-u}}{\sum_{v=s+1}^{t} \binom{t}{v} p^{v} (1-p)^{t-v}}$$

Simulate the arrival

Expected value of the number of ticket holders who show up

Num of trials (nt)

We generate a matrix of random numbers from uniform distribution in [0,1],

Any number < p is considered an arrival

Num of tickets (t)

Simulate the arrival

Expected value of the number of ticket

holders who show up

Expected value of the number of ticket holders who show up

Simulate the expected probability of overbooking

Expected probability of the flight being overbooked

** Expected probability is equal to the expected value of indicator function. Whenever we have Num of arrival > Num of seats, we mark it with an indicator function. Then estimate with the sample mean of indicator functions.

Simulate the expected probability of overbooking

Expected probability of the flight being overbooked

nt=100000, t= 12, s=7, p=0.1, 0.2, ... 1.0

Expected probability of flight being overbooked

Simulate the expected value of the number of grounded ticket holders given overbooked

Expected value of the number of ticket holders who can't fly due to the flight being overbooked

> Nt=200000, t= 12, s=7, p=0.1, 0.2, ... 1.0

Expected value of the number of ticket holder not flying given overbooke

Assignments

- ****** Continue to work on HW4
- ** Read Module Week 5
- ** Next time: Continuous random variable, classic known probability distributions

Additional References

- ** Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

