Probability and Statistics 2

for Computer Science

“The weak law of large
numbers gives us a very
valuable way of thinking
about expectations.” ---Prof.
Forsythe
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Expected value

The expected value (or expectation)
of a random variable X'is

E[X]=) xzP(x)

The expected value is a weighted sum
of all the values X can take



Linearity of Expectation



Expected value of a function of X



What is E[E[X]]?

A. E[X]
B. O
C. Can’t be sure
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Probability distribution

Given the random variable X, what is
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Probability distribution

Given the random variable S in the 4-
sided die, whose range is {2,3,4,5,6,7,8},
probability distribution of S.  \what s g[s] ?

p(s)4 A. 4
B. 5

C. 6

| I




A neater expression for variance

Variance of Random Variable X is
defined as:

var|X| = E[(X — E[X])?]

It’s the same as:
a4 )

var[X| = E[X?] — E[X]?

\_ J




Probability distribution and

cumulative distribution
Given the random variable X, what is

var[2 | X]| +1]?

p(x)AP(X::C) A. O
B. 1

C. 2

| 12 7 N D. 3
-1 0 1y E. -1



Probability distribution

Given the random variable X, what is
var[2|X]| +1]? LetY=2|X|+1
Pyl Py =y)




Probability distribution

Give the random variable S in the 4-
sided die, whose range is {2,3,4,5,6,7,8},
probability distribution of S.

p(s)‘ What is var[S] ?

1/16 1 | | |




Motivation for covariance

Study the relationship between
random variables

Note that it’s the un-normalized
correlation

Applications include the fire control
of radar, communicating in the
presence of noise.



Covariance

The covariance of random
variables X' and Y is

cov(X,Y)=FE[(X — EFX])(Y — E|Y])]
Note that
cov(X, X) = E[(X — E[X])?] = var[X]



A neater form for covariance

A neater expression for
covariance (similar derivation as
for variance)

cov(X,Y) = E[XY] — E[X]|E[Y]



Correlation coefficient is normalized

covariance

The correlation coefficient is
cov(X,Y)

Ox0y

corr(X,Y) =

When X, Y takes on values with equal
probability to generate data sets
{(x,»)}, the correlation coefficient will
be as seen in Chapter 2.



Correlation coefficient is normalized

covariance

The correlation coefficient can also be
written as:

E[XY] - E[X|E[Y]

OxO0y

corr(X,Y) =




Correlation seen from scatter plots

Normalized heart rate
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Covariance seen from scatter plots

Normalized heart rate
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When correlation coefficient or

covariance Is zero

The cova r|ance |S O! No Correlation

That is:

E[XY] - E[X]E[Y] =0

Normalized heart rate

{ "

E\XY] = EX|E]Y] AR
This is a necessary property of
independence of random variables * (not

equal to independence)



Variance of the sum of two random

var| X + Y| = var| X| + var|Y| + 2cov(X,Y)



It events X &Y are independent,
then




E[XY] = E[X|E[Y]



These are equivalent!
Uncorrelatedness

cov(X,Y) =0

var! X + Y| = var|X| + var|Y]



Q: What is this expectation?

We toss two fair identical coins A & B
independently for three times and 4 times
respectively, for each head we earn S1, we
define X'is the earning from A and Y is the
earning from B. What is E[XY]?

A. 2 B.3 C.4



Uncorrelated vs Independent

If two random variables are
uncorrelated, does this mean they are
independent? Investigate the case X
takes -1, 0, 1 with equal probability
and Y=X?.



Covariance example

It’s an underlying concept in principal
component analysis in Chapter 10




Towards the weak law of large

numbers

The weak law says that if we repeat a random
experiment many times, the average of the
observations will “converge” to the expected value

For example, if you repeat the profit example, the
average earning will “converge” to E[X]=20p-10

The weak law justifies using simulations (instead of
calculation) to estimate the expected values of
random variables



Markov's inequality

For any random variable X that only takes
x > (0 and constanta >0

P(X >a) < EIX]

o a

For example, if a = 10 E[X]

P(X > 10E[X]) <



Proof of Markov's inequality



Chebyshev's inequality

For any random variable X and constant a >0

fﬂX—Ewﬂz@<“qu

S T
If we let a = ko where o = std[.X]

P(X ~ BX)| > ko) <

In words, the probability that X is greater than
k standard deviation away from the mean is
small



Proof of Chebyshev's inequality

Given Markov inequality, a>0, x>0

ElX
P(X >a) < X
a
We can rewrite it as

w



Proof of Chebyshev's inequality




Proof of Chebyshev's inequality

Apply Markov inequality to U = (X — E[X])?

) N\
P(|U| > w) < E(U]] _ EU| _ var|X|

S var| X|

4 \ @ ™
= P(1x — BX] > ) < Y05

\_ )

Assume a > ()

Substitute U = (X — E[X])? and w = a°
P((X — E[X])*>a%) <




Now we are closer to the law of large

numbers




Sample mean and IID samples

We define the sample mean X to be the
average of N random variables X, ..., X.

It X, ..., X\yare independent and have
identical probability function P(z)

then the numbers randomly generated from
them are called IID samples

The sample mean is a random variable



Sample mean and IID samples

Assume we have a set of IID samples from N
random variables X, ..., X, that have
probability function P(x)

We use X to denote the sample mean of
these IID samples

y:fﬁ\i1 Xz‘
N

X =



Expected value of sample mean of

IID random variables

By linearity of expected value

BIX] = B[ = 23 )




Expected value of sample mean of

IID random variables

By linearity of expected value

BIX]| = £ = 23

i=1
Given each X has identical P /
a
Z E X]/X




Variance of sample mean of IID

random variables

By the scaling property of variance

N
var[X| = var[— Z X;] var Z Xi]
i=1




Variance of sample mean of IID

random variables

By the scaling property of variance

N
var[X| = var[— Z X;] var[z X;]
i=1

And by mdependence of these IID random
variables N

var[X] = % Z var|X;]

1=1




Variance of sample mean of IID

random variables

By the scaling property of variance

N
var[X| = var[i[ ;X var ZX
And by independence of these IID random
variables |
var|X] = N2 Zvar[Xi]
i=1
Given eachX has |dent|caIP(:c) vm’[Xz-]_? var| X
var[X] = N2 Zvar UCLZ\EX]
\_ 1=1 y




Expected value and variance of sample

mean of IID random variables

The expected value of sample mean is the
same as the expected value of the distribution

[mﬁzEw]j

The variance of sample mean is the
distribution’s variance divided by the sample
size N




Weak law of large numbers

Given a random variable X with finite variance,
probability distribution function P(x) and the
sample mean X of size N.

For any positive number ¢ > 0
lim P(|X — E[X]|| >¢€) =0
N —00

That is: the value of the mean of IID samples is very
close with high probability to the expected value of the
population when sample size is very large



Proof of Weak law of large numbers

Apply Chebyshev’s inequality
var|X]

62

P(IX - E[X]| > €) <



Proof of Weak law of large numbers

Apply Chebyshev’s inequality
X
P(X - BX]| > o) < "X

var| X]

Substitute E[X| = E[X] and ”UQ,’]"[X] = —



Proof of Weak law of large numbers

Apply Chebyshev’s inequality

P(X - E[X]| > ¢ < "X
“  —  war[X]

Substitute E[X| = E[X] and var[X]| = ~

— var|X]
P(X — E[X]| > o) < "2




Proof of Weak law of large numbers

Apply Chebyshev’s inequality

P(X - E[X]| > ¢ < 205
Substitute E[X] = E[X] and var[X] = Um]“\[fX]
~ var|X] N
P(X — ElX][ 2 €) < Ne2 N — oo 0



Proof of Weak law of large numbers

Apply Chebyshev’s inequality

var|X|

P(IX - E[X]| > €) < —
“  —  war[X]

Substitute E[X| = E[X] and var[X]| = ~

— var|X]
— > €) < -0
P(X ~ BX]| > ) < “02H ——

é )

lim P(|X — E[X]| > ¢) =0
\N—>oo )




Applications of the Weak law of

large numbers



Applications of the Weak law of

large numbers

The law of large numbers justifies using
simulations (instead of calculation) to estimate
the expected values of random variables

lim P(|X — E[X]|| >¢€) =0
N—00

The law of large numbers also justifies using
histogram of large random samples to
approximate the probability distribution
function P(x), see proof on

Pg. 353 of the textbook by DeGroot, et al.




Histogram of large random IID samples

approximates the probability distribution

The law of large numbers justifies using
histograms to approximate the probability
distribution. Given N IID random variables X,
ey Xy

% According to the law of large numbers
ZN Y; N — o0
— 1=1 > E[)./;]
N

* As we know for indicator function

E[}/;]:P(ClSXi<CQ):P(61§X<CQ)

Y




Simulation of the sum of two-dice

http://www.randomservices.org/
random/apps/DiceExperiment.html



Probability using the property of

Independence: Airline overbooking

An airline has a flight with s seats. They
always sell t (t>s) tickets for this flight. If
ticket holders show up independently
with probability p, what is the probability
that the flight is overbooked ?

t
P( overbooked) — Z C'(t,u)p“(1 —p)t_“
u=s-+1



Simulation of airline overbooking

An airline has a flight with 7 seats. They

always sell 12 tickets for this flight. If ticket
holders show up independently with
probability p, estimate the following values

% Expected value of the number of ticket
holders who show up

% Probability that the flight being overbooked

% Expected value of the number of ticket
holders who can’t fly due to the flight is
overbooked.



Conditional expectation

Expected value of X conditioned on event A:

EX|Al= ) aP(X = z|A)

reD(X)

Expected value of the number of ticketholders
not flying

E[N Floverbooked] = »  (u—s) S (u)p(()lp_(f)—;)



Simulate the arrival

Expected value of the number of ticket
holders who show up

nt=100000, t= 12, s=7, p=0.1, 0.2, ... 1.0

> Num of trials (nt)

We generate a matrix of
random numbers from
uniform distribution in
[0,1],

Any number < p is
considered an arrival

<€

Num of tickets (t)




Simulate the arrival

Expected value of the number of ticket
hOlderS Who ShOW up Expected value of the number of ticket holders who show up

nt=100000, t= 12, | e
s=7,p=0.1,0.2,..1.0 =

12

AN

Expected val
n\
=

0.2 0.4 0.6 0.8 1.0

Probability of arrival (p)



Simulate the expected probability of

overbookinc

Expected probability of the flight being
overbooked

t= 12, s=7, p=0.1, 0.2, ... 1.0

Expected probability is equal to the expected
value of indicator function. Whenever we
have Num of arrival > Num of seats, we mark it
with an indicator function. Then estimate with
the sample mean of indicator functions.



Simulate the expected probability of

overbookinc

Expected
probability of the
flight being F /
overbooked ©

Expected probability of flight being overbooked

nt=100000, /

t=12, s=7, ) /
p=0.1,0.2, ... 1.0 3 A .

Probability of arrival (p)



Simulate the expected value of the number of

grounded ticket holders given overbooked

Expected value of

the number of ticket :
holders who can’t /
fly due to the flight ,
being overbooked /

Expected value of the number of ticket holder not flying given overbooke

4

Expected val
!\
»

Nt=200000,
t=12, s=7, " g
p=0.1,0.2, ... 1.0 —

"
-
e

0.2 0.4 0.6 0.8 1.0

Probability of arrival (p)



Continue to work on HW4
Read Module Week 5

Next time: Continuous random
variable, classic known probability
distributions



Additional References

Charles M. Grinstead and J. Laurie Snell
"Introduction to Probability”

Morris H. Degroot and Mark J. Schervish
"Probability and Statistics”



See you next time




