
Probability and Statistics for Computer Science

"The eternal mystery of the world is its comprehensibility ... The fact that it is comprehensible is a miracle." – Albert Einstein

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, Course CS361, UIUC, 1.26.2021

How to Zoom in the lectures

- Students' Video and Audio will be both muted during the lecture unless permitted by the instructor for questions.
- * You can use the chatbox to ask questions or write comments.
- Questions will be collected by the assistant for answers or summary.

Have you read the syllabus on the course website?

A. Yes. B. No.

Have you done the survey on the course Compass website?

A. Yes. B. No.

Have you watched the welcome video in the Orientation module?

A. Yes. B. No.

- How many ways are there to watch a lecture video of CS361 Sp21?
 - A. 1. B. 2.

D. None of the above.

Objectives

Welcome/Orientation

Big picture of the contents

* Lecture 1 - Data Visualization & Summary (I)

Vision (PCA)

Passion for learning

*** Compassion for each other**

* Authentic understanding Rote

How to succeed in this course?

- **Factors that will hinder you from success**
- # Factors that will help you succeed

Avoid these that could cause failure

- * Academic integrity infraction by all means! $A \rightarrow B$
- Missing homeworks, project or quizzes + Fair
- # Late/Poor homeworks or project
- Insufficient viewing of the contents

* Poor time management
 * Course Calendar, Annouce
 * Too many challenging classes at the same time

Not motivated/not interested in the topic

Factors that will help you succeed

- **Be engaged/motivated**,
- **Bo not hesitate to ask** for help.
- Be Active in class participation
- * Do as much practice as possible, not just the homework and project.
- Read the textbook and other recommended books.
- Clear your doubts/misconceptions asap (every lecture/discussion is important)

Interactions are important!

- * Try to go to office hours as much as possible
- Try to meet or talk to the instructor as least once personally
- * You are encouraged to join the team work (extra points opportunities)
- Show compassion via community service

Graded Team work

Extra Points

Office hour visits; HW extra points. Project extra points; Group work in discussion Meeting with Prof. HONGYE; Learning Community Service; Team work extra point.

Quizzes

Course materials

Compass Course Site Find it through Compass for CS361 Spring 2021 AL1

- # Public Website
 - https://courses.grainger.illinois.edu/ CS361/sp2021/

Lecture videos and ClassTranscribe

- Lecture and discussion will be recorded and accessible at <u>https://mediaspace.illinois.edu/</u>
- ClassTranscribe provides transcripts for these videos

https://classtranscribe.illinois.edu/home

* The Zoom recording links and the specific links of the above two channels are all on Compass

Our Staff

Instructor: Hongye Liu Teaching Assistants: Weikai Xu (ADA & ADB), Sneha Krishna Kumara (ADC & ADD), Aditya Karan (ADE & ADF), Yiren Wang (ADG & ADH).

Office hours are listed under Zoom Meetings.

Our Staff (II)

Course Assistants: Ajay Fewell, Christina Hu, Chenhui Zhang, Lilac Lai, Matthew Chen, Shirley Mao, and Vishesh Gupta.

Big picture of the content

** Probability and Statistics in action

What does this course teach?

Textbook: Forsyth, D. A. "Probability and Statistics for Computer Science," Springer (2018)

Why are there 4 sections? How are they related?

This field really started with gaming

We are familiar with flipping a coin or throwing a dice, the result is uncertain!

Head Or Tail?

Which side is front?

Life is uncertain so aim for longterm average

We repeat a lot of experiments and see if there is regularity

Head Or Tail?

Which side is front?

Throwing a lot of "coins" for many times in one touch

* Galton board, the Bead Machine

https://www.youtube.com/watch? v=Kq7e6cj2nDw

Probability and Statistics Experiment in action

out Break

Simulation of random draw of a picture on computer

It's the same as throwing a 4-sided die.

What does this course teach?

- # Describing Datasets ch. 1-2
 - Summary & visualization
- * Probability Ch. 3-5
- Inference Statistical Inference
 6-7, 9
 Tools Machine Learning tools

Describing datasets (Summary & visualization)

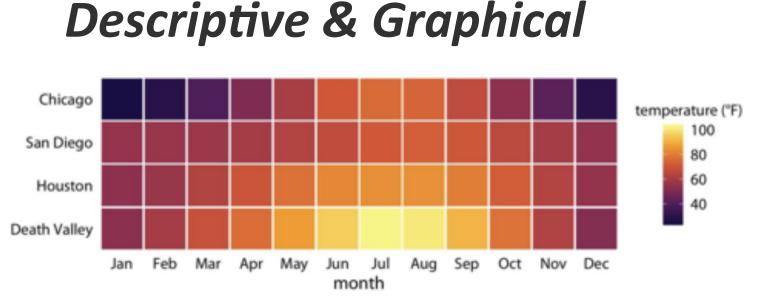


Figure 2-4. Monthly normal mean temperatures for four locations in the US. Data source: NOAA.

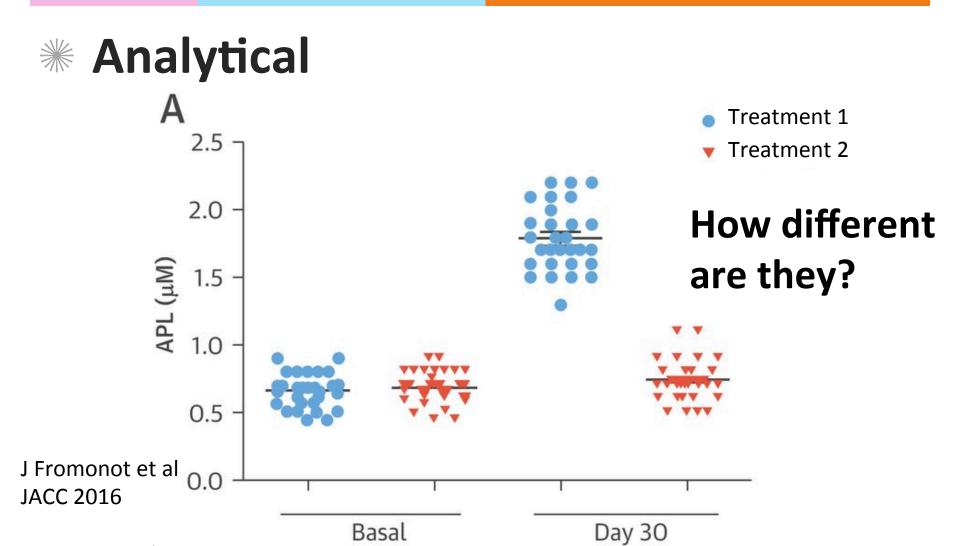
Summarization of 4 locations' annual mean temperature by month

Probability

Mathematical

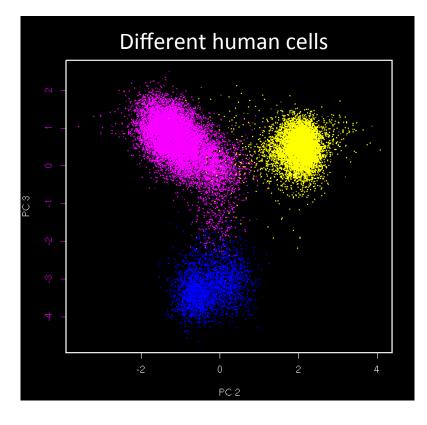
Romeo and Juliet have a date

Each arrives with a delay btw 0 and 1 hour. The first to arrive leaves after 1/4 hour. All pairs of delays are equally likely.


What's the probability that they will meet?

Probability

Mathematical


How many slots are empty on average for a simple hashing table?

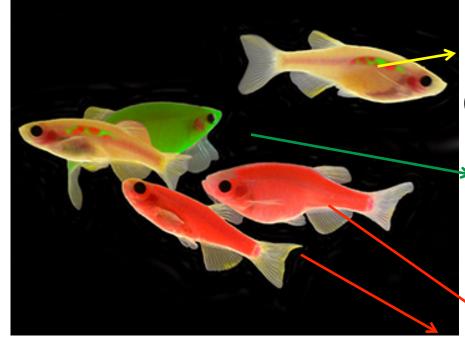
Inference

Tools (Machine learning)

Algorithmical

High-dimensional or complex shaped data sets need tools! Humans are limited in 2-3D. Machine learning is **Highly desired!** Often depends on Statistics.

Why these 4 sections?


- Summary & visualization
 Graphical
- # Probability
 Mathematical
- # Inference Statistical Inference Analytical
- * Tools Machine Learning tools
 Algorithmical

Why these 4 sections?

* The common thread is Data.

We are doing computer science and so

are like these yellow fish

Data Science + Comp. Science

Statistics

^{*}Mathematics

What is special of Data? For Data?

World.

Why these 4 sections?

- Real world data is often high dimensional and complex
- * These 4 parts of knowledge or techniques are inseparably/ organically connected in many real world applications.

Why these 4 sections?

- Summary & visualization

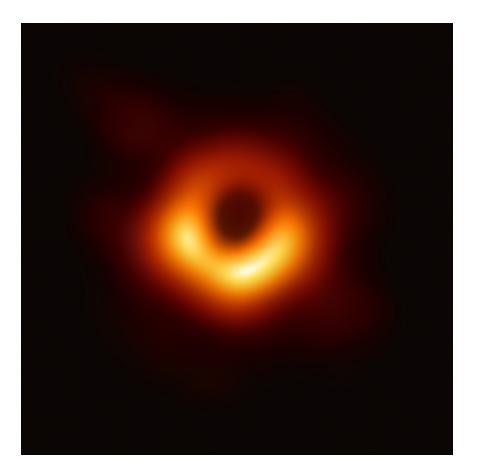
 Graphical
 Data
 Visualization
- * Probability Modeling Data Mathematical X random
- # Inference Statistical Inference
 Analytical Draw conclusion from

* Tools – Machine Learning tools Algorithmical Dealing with high complex

What do we emphasize?

- * Mathematical principle "not just formulas
- * Critical thinking ask questions
- Working with real world data

Authentic understanding - meaningful learning


LECTURE 1

Q. What do you feel about it when we speak of data visualization?

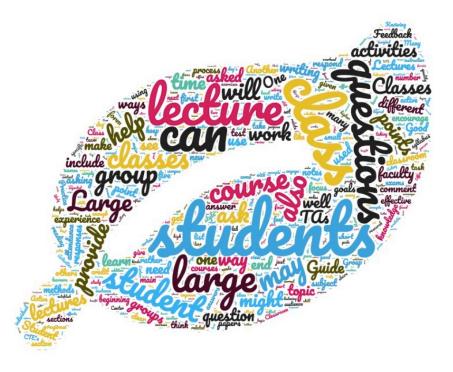
Example 1: Black hole

Constructed image using data collected from many different telescopes' view of the same object

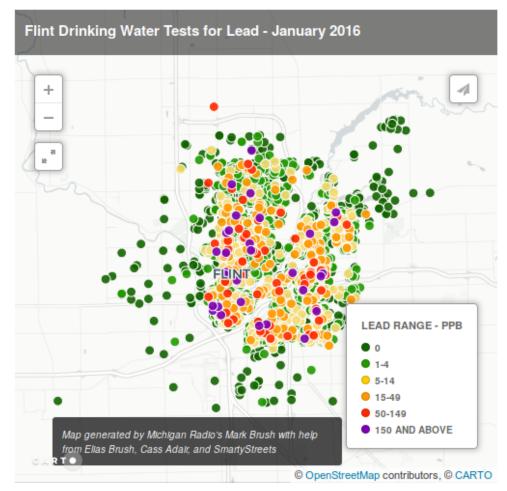
This project received a 3million-dollar award

Credit: NASA

Example 2: Four seasons by Vivaldi


Pitch is shown by the distance from center;
Length of the note is the size of dot
Instrument is shown by the color

https://medium.com/future-today/off-the-staff-an-experiment-invisualizing-notes-from-music-scores-58f6ee9f0cef


Example 3: Word cloud

Frequency of words of a document in novel visual presentation

Example 4: GIS map

Color scaled dots show the lead level in water in an area in Michigan

Lecture I: Data Visualization & Summary

Datasets {x} – a set of N items x_i, i=1...N, each of which is a tuple

Proteins —

Cells

Cell ID	CD45	CD3e	CD19	CD11b	Ki67
1	7.10543765	1.99490875	2.13073358	7.82894178	2.57289058
2	6.5957055	4.65342077	1.62918585	0.88137359	0.88137359
3	6.81991147	1.76259579	4.63429706	2.74452653	0.88137359
4	6.90112651	1.41502227	4.54593607	0.88137359	0.88137359
5	6.75571436	2.87597714	2.18671075	6.72464322	0.91192661
6	7.39538689	2.55285118	4.55845203	1.57273629	0.88137359
7	6.50181654	0.9030504	0.88137359	6.55459538	1.61883699
8	6.60986569	2.1753298	1.52779681	6.44086205	1.5347653
9	6.97651408	2.38246511	1.90249637	3.41580053	1.85303806
10	7.14397512	3.36924119	9.23325502	4.79035059	0.88137359

Each row is a tuple

Lecture I: Data Visualization & Summary

Celle

* Convention: columns are the *features*; the number of features is *dimension*.

Proteins>								
Cell ID	CD45	CD3e	CD19	CD11b	Ki67			
1	7.10543765	1.99490875	2.13073358	7.82894178	2.57289058			
2	6.5957055	4.65342077	1.62918585	0.88137359	0.88137359			
3	6.81991147	1.76259579	4.63429706	2.74452653	0.88137359			
4	6.90112651	1.41502227	4.54593607	0.88137359	0.88137359			
5	6.75571436	2.87597714	2.18671075	6.72464322	0.91192661			
6	7.39538689	2.55285118	4.55845203	1.57273629	0.88137359			
7	6.50181654	0.9030504	0.88137359	6.55459538	1.61883699			
8	6.60986569	2.1753298	1.52779681	6.44086205	1.5347653			
9	6.97651408	2.38246511	1.90249637	3.41580053	1.85303806			
10	7.14397512	3.36924119	9.23325502	4.79035059	0.88137359			

Each row is a tuple with dimension =5

Data types

* Categorical Discrete. Sinder, Not smoke

* Ordinal Discrete Hang Very Hang, Extremely Hang

Temp

Weight

Continuous

Data types

Categorical

Smoker or non-Smoker, Female or Male etc.

Ordinal

Not satisfied, satisfied, very satisfied

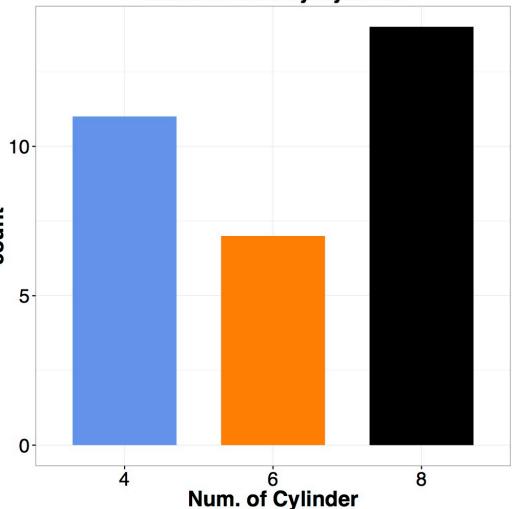
* Continuous (any real number within a range) Temperature

Q. Which of the following data is not categorical?

A. Number of enrolled students in a class
B. Weight of apples in a grocery store
C. Instruments played by an orchestra
D. Type of chemical reagents in a lab
E. A & B

- # General principles
- # Bar chart
- # Histogram
- * Conditional histogram

Tables


In Python or R, there is table format and there is data.frame which is a very versatile table for storing all kinds of data type.

- # General principles
 - Must not mislead or distort; 7 true
 - Aesthetically pleasing;
 - Clear, Attractive, Convincing;
 - Show message/significance.

** Bar chart A set of bars that are organized by categorical or ordinal feature

Data: "mtcars"

Count of cars by Cylinder

An example of good, ugly, bad, wrong

Dr. Wilke illustrated the difference between good, ugly, bad and wrong visualization

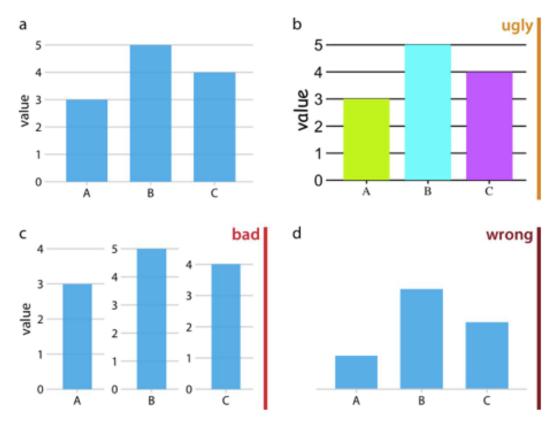
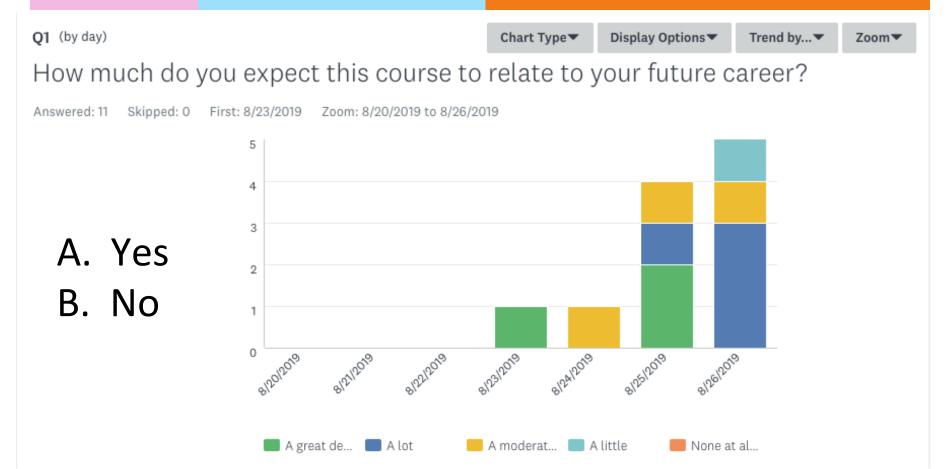
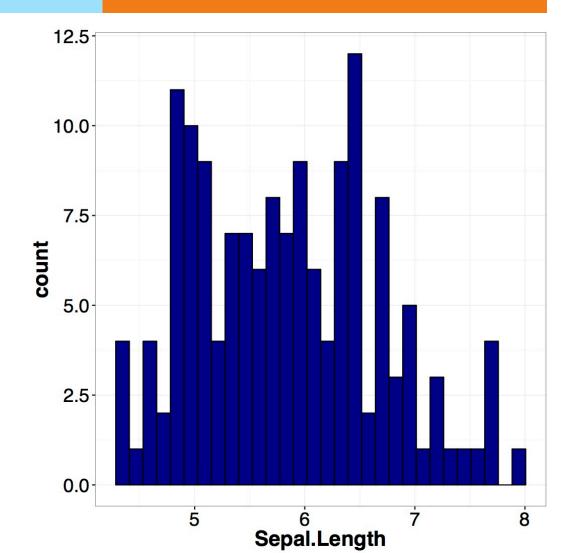



Figure 1-1. Examples of ugly, bad, and wrong

C. Wilke "Fundamentals of Data Visualization"

Q: Is this a good bar chart?

How about using a color scale

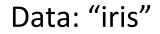


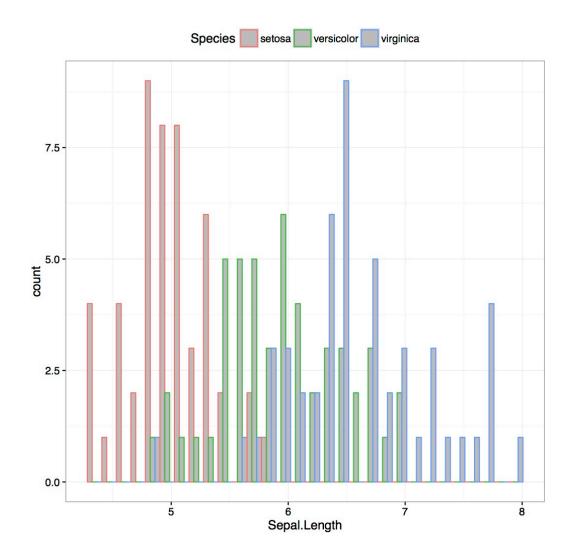
Visualizing Data with Histogram

Histogram

A set of bars that are organized by bins that contains numerical data (discrete or continuous)

Data: "iris"




Visualizing Data with Histogram (II)

* Conditional

histogram

Histogram generated by subsets of the data

Visualizing Data with Histogram (III)

* Conditional Participation 0 1 histogram 15 Mean (aqua) = 890Mean (red) = 760 10 count Data: Combined Score (HWs, 5 Prj and Exams) grouped by students with full participation or **not full** in 0-CS361 fall 2019 1000 400 600 800 Total_HWPRJExam

Assignments

Finish the orientation module on Compass

- Submit HW0 to Gradescope to test it
- Start week1 module on Compass

Additional References

- * Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See you!

