This lab gives practice at constructing NFAs and understanding their power and flexibility.

- 1. Design an NFA for the set of strings that consist of 01 repeated one or more times, or 010 repeated one or more times.
- 2. Let $M = (\Sigma, Q, \delta, s, F)$ be a DFA recognizing language *L*. Show that $L^R = \{w^R \mid w \in L\}$ is also regular by constructing an NFA $N = (\Sigma, Q_N, \delta_N, s_N, F_N)$ that recognizes L^R . You should completely, formally, specify each component of *N* in terms of *M*. *Hint*: reverse the edges of the graph representing *M*?
- 3. To think about at home: Let $L = \{w \in \{a, b\}^* \mid an \ a \ appears in some position \ i \ of \ w$, and a b appears in position $i + 2\}$.
 - (a) Create an NFA *N* for *L* with at most four states.
 - (b) Using the "power-set" construction, create a DFA *M* from *N*. Rather than writing down the sixteen states and trying to fill in the transitions, build the states as needed, because you won't end up with unreachable or otherwise superfluous states.
 - (c) Now directly design a DFA M' for L with only five states, and explain the relationship between M and M'.