- 1. Given a sequence $a_1, a_2, ..., a_n$ of *n* distinct numbers, an *inversion* is a pair i < j such that $a_i > a_j$. Note that a sequence has no inversions if and only if it is sorted in ascending order. The second part is to think about later.
 - Adapt the merge sort algorithm to count the number of inversions in a given sequence in $O(n \log n)$ time. You can find the detailed description of this in the Kleinberg-Tardos book (Chapter 5). *Hint:* Modify the algorithm for Merge Sort.
 - Call a pair i < j a *significant* inversion if $a_i > 2a_j$. Describe an $O(n \log n)$ time algorithm to count the number of significant inversions in a given sequence.
- 2. Give asymptotically tight solutions to the following recurrences. For the third problem *prove* your upper bound via induction.
 - (a) $T(n) = T(\sqrt{n}) + \log n$ for $n \ge 4$ and T(n) = 1 for $1 \le n < 4$.
 - (b) T(n) = T(n/5) + T(n/10) + T(7n/10) + n for $n \ge 20$ and T(n) = 1 for $1 \le n < 20$.
 - (c) T(n) = T(n/6) + T(n/10) + T(7n/10) + n for $n \ge 20$ and T(n) = 1 for $1 \le n < 20$.