1. Given a sequence $a_{1}, a_{2}, \ldots, a_{n}$ of n distinct numbers, an inversion is a pair $i<j$ such that $a_{i}>a_{j}$. Note that a sequence has no inversions if and only if it is sorted in ascending order. The second part is to think about later.

- Adapt the merge sort algorithm to count the number of inversions in a given sequence in $O(n \log n)$ time. You can find the detailed description of this in the Kleinberg-Tardos book (Chapter 5). Hint: Modify the algorithm for Merge Sort.
- Call a pair $i<j$ a significant inversion if $a_{i}>2 a_{j}$. Describe an $O(n \log n)$ time algorithm to count the number of significant inversions in a given sequence.

2. Give asymptotically tight solutions to the following recurrences. For the third problem prove your upper bound via induction.
(a) $T(n)=T(\sqrt{n})+\log n$ for $n \geq 4$ and $T(n)=1$ for $1 \leq n<4$.
(b) $T(n)=T(n / 5)+T(n / 10)+T(7 n / 10)+n$ for $n \geq 20$ and $T(n)=1$ for $1 \leq n<20$.
(c) $T(n)=T(n / 6)+T(n / 10)+T(7 n / 10)+n$ for $n \geq 20$ and $T(n)=1$ for $1 \leq n<20$.
