
“CS 374” Lab 16 — October 23 Fall 2015

1. Let G = (V, E) be a directed graph with edge length ` : E→ R+. A subset of the edges E′ ⊆ E are
considered risky. Describe an algorithm that given G = (V, E), the edge lengths `, the risky subset
E′, a node s and an integer h finds for each node v ∈ V the shortest path distance from s to v
among all paths that contain at most h risky edges. Hint: Apply the dynamic programming idea
behind Bellman-Ford algorithm.

Now suppose there are two different types of risky edges: blue and red. Let E1 ⊂ E be the blue
risky edges and E2 ⊂ E be the red risky edges. You want to solve the same single-source shortest
path problem but now the paths are constrained to use at most h1 blue risky edges and at most h2
red risky edges.

2. [To do later:] Suppose you are given a sequence of non-negative integers separated by + and ×
signs; for example:

2× 3+ 0× 6× 1+ 4× 2

You can change the value of this expression by adding parentheses in different places. For example:

2× (3+ (0× (6× (1+ (4× 2))))) = 6

(((((2× 3) + 0)× 6)× 1) + 4)× 2= 80

((2× 3) + (0× 6))× (1+ (4× 2)) = 108

(((2× 3) + 0)× 6)× ((1+ 4)× 2) = 360

Describe and analyze an algorithm to compute, given a list of integers separated by + and × signs,
the largest possible value we can obtain by inserting parentheses.

Your input is an array A[0 .. 2n] where each A[i] is an integer if i is even and + or × if i is odd.
Assume any arithmetic operation in your algorithm takes O(1) time.

1



“CS 374” Lab 16 — October 23 Fall 2015

Basic steps in developing a dynamic programming algorithm

1. Formulate the problem recursively. This is the hard part. There are two distinct but equally
important things to include in your formulation.

(a) Specification. First, give a clear and precise English description of the problem you are
claiming to solve. Don’t describe how to solve the problem at this stage; just describe what
the problem actually is. Otherwise, the reader has no way to know what your recursive
algorithm is supposed to compute.

(b) Solution. Second, give a clear recursive formula or algorithm for the whole problem in terms
of the answers to smaller instances of exactly the same problem. It generally helps to think
in terms of a recursive definition of your inputs and outputs. If you discover that you need
a solution to a similar problem, or a slightly related problem, you’re attacking the wrong
problem; go back to step 1.

2. Build solutions to your recurrence from the bottom up. Write an algorithm that starts with
the base cases of your recurrence and works its way up to the final solution, by considering
intermediate subproblems in the correct order. This stage can be broken down into several smaller,
relatively mechanical steps:

(a) Identify the subproblems. What are all the different ways can your recursive algorithm call
itself, starting with some initial input? For example, the argument to RECFIBO is always an
integer between 0 and n.

(b) Analyze space and running time. The number of possible distinct subproblems determines
the space complexity of your memoized algorithm. To compute the time complexity, add up
the running times of all possible subproblems, ignoring the recursive calls. For example, if
we already know Fi−1 and Fi−2, we can compute Fi in O(1) time, so computing the first n
Fibonacci numbers takes O(n) time.

(c) Choose a data structure to memoize intermediate results. For most problems, each
recursive subproblem can be identified by a few integers, so you can use a multidimensional
array. For some problems, however, a more complicated data structure is required.

(d) Identify dependencies between subproblems. Except for the base cases, every recursive
subproblem depends on other subproblems—which ones? Draw a picture of your data
structure, pick a generic element, and draw arrows from each of the other elements it
depends on. Then formalize your picture.

(e) Find a good evaluation order. Order the subproblems so that each subproblem comes after
the subproblems it depends on. Typically, this means you should consider the base cases
first, then the subproblems that depends only on base cases, and so on. More formally, the
dependencies you identified in the previous step define a partial order over the subproblems;
in this step, you need to find a linear extension of that partial order. Be careful!

(f) Write down the algorithm. You know what order to consider the subproblems, and you
know how to solve each subproblem. So do that! If your data structure is an array, this
usually means writing a few nested for-loops around your original recurrence.

2


