1. Design a one-tape TM that computes the function $f(n)=2 n$ when n is given in unary notation. More specifically, design a TM with input alphabet $\{0,1, \$\}$, that on input $\$ 0^{n}$ changes the tape contents to $\$ 0^{2 n}$ and halts. On halting, the "Instantaneous Description" (or "ID") of your TM should be $q_{\text {halt }} \$ 0^{2 n}$. (The initial ID is $q_{\text {start }} \$ 0^{n}$.)
Could this be done more easily with a two-tape TM?
Can you modify your solution to obtain a TM such that $q_{\text {start }} 0^{n} \Rightarrow^{*} q_{\text {halt }} 0^{2 n}$ (i.e., without the $\$$ symbol in the input or output).
2. Give a reasonably detailed description of a TM that computes the exponential function to the base 2 for unary input: i.e., it should convert an input string of the form $\$ 0^{n}$ to the string $\$ 0^{2^{n}}$. That is, you should ensure that $q_{\text {start }} \$ 0^{n} \Rightarrow^{*} q_{\text {halt }} \$ 0^{2^{n}}$. You don't have to completely design the TM; just provide enough detail that a TM programmer would know what states and transitions to use. Multiple tapes will be convenient.
3. Think about at home... How would a (multi-tape) TM compute $\lceil\log n\rceil$? That is, if the initial ID is $q_{0} \$ 0^{n}$, then the final ID should be $q_{\text {halt }} \$ 0^{\lceil\log n\rceil}$
