
Deterministic Finite 
Automata

Lecture 3
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CS 374 Tips
This course moves pretty fast 

CS 374 expects you to already be completely 
comfortable with the basics: formal notation, definition 

and proofs (including induction) 

Be prepared to refresh CS 173 material at home! 

There will often be more slides posted online than would 
actually be covered in class (e.g., worked out examples). 

Do review them. 

Review the notes posted online (before and/or after the 
lecture)2
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Complexity of Languages

Central Question: How complex an algorithm is 
needed to compute (aka decide) a language? 

Today: a simple class of algorithms, that are fast and 
can be implemented using minimal hardware 

Deterministic Finite Automata (DFA) 

DFAs around us: Vending machines, Elevators, Digital watch 
logic, Calculators, Lexical analyzers (part of program 

compilation), …
3
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Today

DFA : what are they? 

What kind of languages can be decided using 
them? 

How to build DFAs 

How to build DFAs from simpler DFAs

4
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DFA (a.k.a. FSM)
Finite: cannot use more memory to work on  

longer inputs

next input 
symbol 
fed here

output bit 
for the 

input so 
far

finite writable 
memory (state)

next-state 
look-up 
table

5
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finite writable 
memory (state)

DFA (a.k.a. FSM)
Example: check if binary input is a multiple of 3

next input 
symbol 
fed here

output bit 
for the 

input so 
far

store x mod 3 here 
(initial value “null”). 

output bit indicates if 
it is 0.

next-state 
look-up 
table

calculate x’ mod 3 from  
x mod 3 and input bit b, 

 where x’ = 2x + b

6
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DFA (a.k.a. FSM)
Example: check if binary input is a multiple of 3

next input 
symbol 
fed here

output bit 
for the 

input so 
far

store x mod 3 here 
(initial value 0). 

output bit indicates if 
it is 0.

next-state 
look-up 
table

state  
 (x mod 3)

output

start null 0
0 1
1 0
2 0

7

calculate x’ mod 3 from  
x mod 3 and input bit b, 

 where x’ = 2x + b

input 
bit

current 
state

next 
state

0 null 0
1 null 1
0 0 0
1 0 1
0 1 2
1 1 0
0 2 1
1 2 2
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state  
 (x mod 3)

output

start null 0
0 1
1 0
2 0

input 
bit

current 
state

next 
state

0 null 0
1 null 1
0 0 0
1 0 1
0 1 2
1 1 0
0 2 1
1 2 2

Example: check if input (MSB first) is a multiple of 3
DFA (a.k.a. FSM)

0 1

10 1 2

null
0 1

0

0

1

How to fully specify a DFA: 
Alphabet: Σ  
Set of States: Q 
Start state: s ∈ Q 
Set of Final states: F ⊆ Q 
Transition Function: δ : Q × Σ → Q 8
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Behavior of a DFA on an input
M = (Σ, Q, δ, s, F) "

δ*(q,w) be the state M reaches on input w ∈ Σ*, 
starting from a state q ∈ Q"

Formally, δ*(q,ε) = q, and δ*(q,au) = δ*(δ(q,a), u) 

We write              to denote δ*(q,w) = p"

We write             to denote δ(q,a) = p 

9

wq � p

aq → p

δ*(q,ε)   = q  
δ*(q,au) = δ*(δ(q,a), u)
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Behavior of a DFA on an input
δ*(null,01001) = ? 

δ*(0,01001) = ? 

δ*(null,ε) = ? 

δ*(0,ε) = ? 

δ*(null,010) = ? 

δ*(2,01) = ?

10

0 1

10 1 2

null
0 1

0

0

1

0

0

null

0

2

0

δ*(q,ε)   = q  
δ*(q,au) = δ*(δ(q,a), u)
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Behavior of a DFA on an input
Theorem: δ*(q,uv) = δ*(δ*(q,u),v)#

Proof: By induction on |u| 

Base case: |u|=0.  δ*(q,uv) = δ*(q,v) and  
δ*(δ*(q,u),v) = δ*(δ*(q,ε),v) = δ*(q,v)#

Induction: Let n > 0.  
Assume that the claim holds for all u, |u| < n (and all v, q).  
Consider any u, v, q, s.t.  |u|=n.  Let u=aw, where |w| = n-1 < n.

11

δ*(q,ε)   = q  
δ*(q,au) = δ*(δ(q,a), u)

δ*(q,uv) = δ*(q,awv) = δ*(q’,wv) where q’=δ(q,a) [ by def. ] 
.                               = δ*(δ*(q’,w),v)                    [ by IH ] 
But δ*(q’,w) = δ*(δ(q,a),w) = δ*(q,aw)                 [ by def. ] 
Hence δ*(q,uv) = δ*(δ*(q,u), v)                               [QED]
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Input Accepted by a DFA
We say that M accepts w ∈ Σ* if M, on input w, 

starting from the start state s, reaches a final state 

i.e., δ*(s,w) ∈ F 

L(M) is the set of all strings accepted by M 

i.e., L(M) = { w | δ*(s,w) ∈ F }#

Called the language accepted by M

12
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Warning

“M accepts language L”   does not mean simply 
that M accepts each string in L. 

“M accepts language L” means 
M accepts each string in L  and no others! 

L(M) = L

13
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Reject state

Examples:  What is L(M) ?

1

0,10

0 1

0 1

2

abbreviation

B

0 1A 2B B

B

A

4

A

3 A

B
A

A AB ABB ABBA

0 1
0

3

1

2
0

1

0

0
1 1

odd #0 and odd #1
0*11*

(A+B)*ABBA
14
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Recall Regular Languages
Any regular language has a regular expression  

and vice versa

Atomic expressions (Base cases)

Ø #
ε"

a  for a ∈ Σ 

L(Ø) = Ø#
L(ε) = { ε }#
L(a) = { a }

Inductively defined expressions

(r1+r2)#
(r1r2)#
(r)*

L(r1+r2) = L(r1) ∪ L(r2) #
L(r1r2) = L(r1)L(r2) #

L(r*) = L(r)*
Any regular language is accepted by a DFA  

and vice versa (to be proven later)15



Building DFAs

16
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State = Memory
First, decide on Q 

The state of a DFA is its entire memory of what has 
come before 

The state must capture enough information to 
complete the computation on the suffix to come 

When designing a DFA, think “what do I need to 
know at this moment?”  That is your state.

17
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Construction Exercise
L(M) = {w | w ends in 01 or 10 } 

What should be in the memory? 

Last two bits seen.  
Possible values: ε, 0, 1, 00, 01, 10, 11

18

00 01

10 11

ε

0

1
0

1

0

1
0 1

0

1

0

0

1

1

0

1
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Construction Exercise
L(M) = {w | w ends in 01 or 10 } 

What should be in the memory? 

Last two bits seen.  
Possible values: ε, (0+00), (1+11), 01, 10#

19

0

0 01

10 1

1

0

1
0 1

ε 0

1

0

1
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Construction Exercise
L(M) = {w | w contains 011 or 110 } 

Brute force: Enough to remember last 3 symbols 
(8+4+2+1=15 states). Stay at accepting states if reached. 

“Clever” construction: Enough to remember valid prefixes.  
States: ε, 0, 1, 01, 11, OK (can forget everything else)

0 1 1

0,1

20

0

1

ε 0 01 OK

11

1 0

1

10

0

State: longest suffix 
of input that is a 

valid prefix of 
pattern
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Building DFAs from DFAs
Complement: M’ s.t. L(M’) = Σ* — L(M)  

F’ = Q— F 

Concatenation: M12 s.t. L(M12) = L(M1) L(M2) 
Kleene Star: M’ s.t. L(M’) = L(M)* 

Later 

Intersection and Union 
DFA simulating two DFAs concurrently

21
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Cross Product of DFAs
DFA M12 simulating the execution of 2 DFAs M1 & M2 

 
 
 
 

Q12 = Q1 × Q2        s12 = (s1, s2)#

δ12( (q1,q2), a) = (δ1(q1, a), δ2(q2, a) )

next-state 
look-up 
table

next-state 
look-up 
table

Mb = (Σ,Qb,sb,Fb,δb) 

• Theorem: ∀ w ∈ Σ* ,  
δ*12(s12, w) = (q1,q2)  ⇔  δ*1(s1,w) = q1   &  δ*2(s2,w) = q2

Proof by 
induction on |w|

• F12 = ? Depends on what we want22
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Cross Product of DFAs
DFA M12 simulating the execution of 2 DFAs M1 & M2

next-state 
look-up 
table

next-state 
look-up 
table

Mb = (Σ,Qb,sb,Fb,δb) 

• F12 = F1 × F2                        ⇒  L(M12) = L(M1) ∩ L(M2)#

• F12 = (F1 × Q2) ∪ (Q1 × F2) ⇒  L(M12) = L(M1) ∪  L(M2)#

• F12 = F1 × (Q2 — F2)           ⇒  L(M12) = L(M1) — L(M2)
23
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Cross Product of DFAs

L(M1) : odd #0

L(M2) : odd #1

00 10

01 11

0

1

1

0

0

1

0 1
10

0

1

24

0

0

0

0
1 1 1 1
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Cross Product of DFAs

L(M1) : odd #0

L(M2) : odd #1

00 10

01 11

0

1

1

0

0

1

0 1
10

0

1

25

0

0

0

0
1 1 1 1

L(M12) = L(M1) ∩ L(M2) 
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Cross Product of DFAs

L(M1) : odd #0

L(M2) : odd #1

00 10

01 11

0

1

1

0

0

1

0 1
10

0

1

26

0

0

0

0
1 1 1 1

L(M12) = L(M1) ∪ L(M2) 
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Summary

DFA : M = (Σ, Q, δ, s, F ),  L(M) = { w | δ*(s,w) ∈ F }  

M provides a linear time algorithm to decide L(M)  
(later: L(M) is a regular language) 

How to build DFAs :  
Ask what should be in the state 

How to build DFAs from simpler DFAs :  
Complement, Product Construction.  

More later! 
27


