
Deterministic Finite
Automata

Lecture 3

1

C
S

37
4

CS 374 Tips
This course moves pretty fast

CS 374 expects you to already be completely
comfortable with the basics: formal notation, definition

and proofs (including induction)

Be prepared to refresh CS 173 material at home!

There will often be more slides posted online than would
actually be covered in class (e.g., worked out examples).

Do review them.

Review the notes posted online (before and/or after the
lecture)2

C
S

37
4

Complexity of Languages

Central Question: How complex an algorithm is
needed to compute (aka decide) a language?

Today: a simple class of algorithms, that are fast and
can be implemented using minimal hardware

Deterministic Finite Automata (DFA)

DFAs around us: Vending machines, Elevators, Digital watch
logic, Calculators, Lexical analyzers (part of program

compilation), …
3

C
S

37
4

Today

DFA : what are they?

What kind of languages can be decided using
them?

How to build DFAs

How to build DFAs from simpler DFAs

4

C
S

37
4

DFA (a.k.a. FSM)
Finite: cannot use more memory to work on  

longer inputs

next input
symbol
fed here

output bit
for the

input so
far

finite writable
memory (state)

next-state
look-up
table

5

C
S

37
4

finite writable
memory (state)

DFA (a.k.a. FSM)
Example: check if binary input is a multiple of 3

next input
symbol
fed here

output bit
for the

input so
far

store x mod 3 here
(initial value “null”).

output bit indicates if
it is 0.

next-state
look-up
table

calculate x’ mod 3 from  
x mod 3 and input bit b, 

 where x’ = 2x + b

6

C
S

37
4

DFA (a.k.a. FSM)
Example: check if binary input is a multiple of 3

next input
symbol
fed here

output bit
for the

input so
far

store x mod 3 here
(initial value 0).

output bit indicates if
it is 0.

next-state
look-up
table

state  
 (x mod 3)

output

start null 0
0 1
1 0
2 0

7

calculate x’ mod 3 from  
x mod 3 and input bit b, 

 where x’ = 2x + b

input
bit

current
state

next
state

0 null 0
1 null 1
0 0 0
1 0 1
0 1 2
1 1 0
0 2 1
1 2 2

C
S

37
4

state  
 (x mod 3)

output

start null 0
0 1
1 0
2 0

input
bit

current
state

next
state

0 null 0
1 null 1
0 0 0
1 0 1
0 1 2
1 1 0
0 2 1
1 2 2

Example: check if input (MSB first) is a multiple of 3
DFA (a.k.a. FSM)

0 1

10 1 2

null
0 1

0

0

1

How to fully specify a DFA:
Alphabet: Σ
Set of States: Q
Start state: s ∈ Q
Set of Final states: F ⊆ Q
Transition Function: δ : Q × Σ → Q 8

C
S

37
4

Behavior of a DFA on an input
M = (Σ, Q, δ, s, F) "

δ*(q,w) be the state M reaches on input w ∈ Σ*,
starting from a state q ∈ Q"

Formally, δ*(q,ε) = q, and δ*(q,au) = δ*(δ(q,a), u)

We write to denote δ*(q,w) = p"

We write to denote δ(q,a) = p

9

wq � p

aq → p

δ*(q,ε) = q  
δ*(q,au) = δ*(δ(q,a), u)

C
S

37
4

Behavior of a DFA on an input
δ*(null,01001) = ?

δ*(0,01001) = ?

δ*(null,ε) = ?

δ*(0,ε) = ?

δ*(null,010) = ?

δ*(2,01) = ?

10

0 1

10 1 2

null
0 1

0

0

1

0

0

null

0

2

0

δ*(q,ε) = q  
δ*(q,au) = δ*(δ(q,a), u)

C
S

37
4

Behavior of a DFA on an input
Theorem: δ*(q,uv) = δ*(δ*(q,u),v)#

Proof: By induction on |u|

Base case: |u|=0. δ*(q,uv) = δ*(q,v) and  
δ*(δ*(q,u),v) = δ*(δ*(q,ε),v) = δ*(q,v)#

Induction: Let n > 0.  
Assume that the claim holds for all u, |u| < n (and all v, q).  
Consider any u, v, q, s.t. |u|=n. Let u=aw, where |w| = n-1 < n.

11

δ*(q,ε) = q  
δ*(q,au) = δ*(δ(q,a), u)

δ*(q,uv) = δ*(q,awv) = δ*(q’,wv) where q’=δ(q,a) [by def.]
. = δ*(δ*(q’,w),v) [by IH]
But δ*(q’,w) = δ*(δ(q,a),w) = δ*(q,aw) [by def.]
Hence δ*(q,uv) = δ*(δ*(q,u), v) [QED]

C
S

37
4

Input Accepted by a DFA
We say that M accepts w ∈ Σ* if M, on input w,

starting from the start state s, reaches a final state

i.e., δ*(s,w) ∈ F

L(M) is the set of all strings accepted by M

i.e., L(M) = { w | δ*(s,w) ∈ F }#

Called the language accepted by M

12

C
S

37
4

Warning

“M accepts language L” does not mean simply
that M accepts each string in L.

“M accepts language L” means 
M accepts each string in L and no others!

L(M) = L

13

C
S

37
4

Reject state

Examples: What is L(M) ?

1

0,10

0 1

0 1

2

abbreviation

B

0 1A 2B B

B

A

4

A

3 A

B
A

A AB ABB ABBA

0 1
0

3

1

2
0

1

0

0
1 1

odd #0 and odd #1
0*11*

(A+B)*ABBA
14

C
S

37
4

Recall Regular Languages
Any regular language has a regular expression  

and vice versa

Atomic expressions (Base cases)

Ø #
ε"

a for a ∈ Σ

L(Ø) = Ø#
L(ε) = { ε }#
L(a) = { a }

Inductively defined expressions

(r1+r2)#
(r1r2)#
(r)*

L(r1+r2) = L(r1) ∪ L(r2) #
L(r1r2) = L(r1)L(r2) #

L(r*) = L(r)*
Any regular language is accepted by a DFA  

and vice versa (to be proven later)15

Building DFAs

16

C
S

37
4

State = Memory
First, decide on Q

The state of a DFA is its entire memory of what has
come before

The state must capture enough information to
complete the computation on the suffix to come

When designing a DFA, think “what do I need to
know at this moment?” That is your state.

17

C
S

37
4

Construction Exercise
L(M) = {w | w ends in 01 or 10 }

What should be in the memory?

Last two bits seen.  
Possible values: ε, 0, 1, 00, 01, 10, 11

18

00 01

10 11

ε

0

1
0

1

0

1
0 1

0

1

0

0

1

1

0

1

C
S

37
4

Construction Exercise
L(M) = {w | w ends in 01 or 10 }

What should be in the memory?

Last two bits seen.  
Possible values: ε, (0+00), (1+11), 01, 10#

19

0

0 01

10 1

1

0

1
0 1

ε 0

1

0

1

C
S

37
4

Construction Exercise
L(M) = {w | w contains 011 or 110 }

Brute force: Enough to remember last 3 symbols
(8+4+2+1=15 states). Stay at accepting states if reached.

“Clever” construction: Enough to remember valid prefixes.  
States: ε, 0, 1, 01, 11, OK (can forget everything else)

0 1 1

0,1

20

0

1

ε 0 01 OK

11

1 0

1

10

0

State: longest suffix
of input that is a

valid prefix of
pattern

C
S

37
4

Building DFAs from DFAs
Complement: M’ s.t. L(M’) = Σ* — L(M)  

F’ = Q— F

Concatenation: M12 s.t. L(M12) = L(M1) L(M2)
Kleene Star: M’ s.t. L(M’) = L(M)*

Later

Intersection and Union
DFA simulating two DFAs concurrently

21

C
S

37
4

Cross Product of DFAs
DFA M12 simulating the execution of 2 DFAs M1 & M2 

 
 
 
 

Q12 = Q1 × Q2 s12 = (s1, s2)#

δ12((q1,q2), a) = (δ1(q1, a), δ2(q2, a))

next-state
look-up
table

next-state
look-up
table

Mb = (Σ,Qb,sb,Fb,δb)

• Theorem: ∀ w ∈ Σ* ,  
δ*12(s12, w) = (q1,q2) ⇔ δ*1(s1,w) = q1 & δ*2(s2,w) = q2

Proof by
induction on |w|

• F12 = ? Depends on what we want22

C
S

37
4

Cross Product of DFAs
DFA M12 simulating the execution of 2 DFAs M1 & M2

next-state
look-up
table

next-state
look-up
table

Mb = (Σ,Qb,sb,Fb,δb)

• F12 = F1 × F2 ⇒ L(M12) = L(M1) ∩ L(M2)#

• F12 = (F1 × Q2) ∪ (Q1 × F2) ⇒ L(M12) = L(M1) ∪ L(M2)#

• F12 = F1 × (Q2 — F2) ⇒ L(M12) = L(M1) — L(M2)
23

C
S

37
4

Cross Product of DFAs

L(M1) : odd #0

L(M2) : odd #1

00 10

01 11

0

1

1

0

0

1

0 1
10

0

1

24

0

0

0

0
1 1 1 1

C
S

37
4

Cross Product of DFAs

L(M1) : odd #0

L(M2) : odd #1

00 10

01 11

0

1

1

0

0

1

0 1
10

0

1

25

0

0

0

0
1 1 1 1

L(M12) = L(M1) ∩ L(M2)

C
S

37
4

Cross Product of DFAs

L(M1) : odd #0

L(M2) : odd #1

00 10

01 11

0

1

1

0

0

1

0 1
10

0

1

26

0

0

0

0
1 1 1 1

L(M12) = L(M1) ∪ L(M2)

C
S

37
4

Summary

DFA : M = (Σ, Q, δ, s, F), L(M) = { w | δ*(s,w) ∈ F }

M provides a linear time algorithm to decide L(M)  
(later: L(M) is a regular language)

How to build DFAs :  
Ask what should be in the state

How to build DFAs from simpler DFAs :  
Complement, Product Construction.  

More later!
27

