
Non-deterministic
Finite Automata

Lecture 4

1

C
S

37
4

Today

What is non-determinism?

NFAs

NFAs vs. DFAs

NFAs with ε-moves

Closure Properties of  
class of languages accepted by NFAs/DFAs

!

2

C
S

37
4

Tracking Computation

A computation’s configuration evolves in each time-step

3

0 1

10 1 2

null
0 1

0

0

1
on input 1010

10101010 1010 1010 1010

current state and
remaining input

C
S

37
4

Tracking Computation

A computation’s configuration evolves in each time-step

4

10101010 1010 1010 1010

null

0

1

2

Deterministic: Each step is fully
determined by the configuration
of the previous step

current state and
remaining input

C
S

37
4

Non-Determinism
At each step the computation is allowed to proceed in

multiple ways (zero, one or more)

5

10101010 1010 1010 1010

C
S

37
4

Non-Determinism
At each step the computation is allowed to proceed in

multiple ways (zero, one or more)

6

1010

At the end, left with zero or more possible
configurations (each with its own output)

What is the outcome of the entire computation?

Accept iff at least one configuration accepts

How about other rules — e.g., accept iff all the configurations accept,
accept iff a majority accepts etc.?

Sure, but they have other names — e.g., co-non-deterministic computation,
probabilistic computation etc.

C
S

37
4

Non-Determinism
Unrealistic model of computation!

A very powerful “high-level” programming language

7

10101010 1010 1010 1010

will see some
uses today

C
S

37
4

Non-Deterministic FA

What can be non-deterministic about an FA?

At a given state, on a given input, multiple “next-states”

8

as c

b

0

1
0

1

0,1

0

1

1

0

C
S

37
4

Non-Deterministic FA

9

[s]

10101010 1010 1010 1010

[b]

[c] [c]

[b]

[a] [a] [a][a]

[s][s]

as c

b

0

1
0

1

0,1

0

1

1

0

C
S

37
4

NFA : Examples

Design an NFA to recognize 
L(M) = {w | w contains 011 or 110 } 

 
 
 
 

For any input string, if it contains 011 or 110, then there
is some computation path, that ends in the final state

And vice versa
10

0 1 1

1 0

11

ε 0 01 OK

11

0,10,1

C
S

37
4

Design an NFA to recognize 
L(M) = {w | w has the substring 110 and ends in 111 } 

 
 

Design an NFA to recognize 
L(M) = {w | w has the substring 110 and ends in 000 }

NFA : Examples

11

1 1 1
c d e f

1 1 0
s a b

0,1
0,1

0 0 0
c d e f

1 1 0
s a b

0,1
0,1

0

C
S

37
4

NFA : Formally

Similar to a DFA : N = (Σ, Q, δ, s, F)  
Σ: alphabet Q: state space s: start state F: set of accepting states#

δ : Q × Σ → �(Q)

δ(q, a) = set of states N could move to from q, on input a

12

as c

b

0

1
0

1

0,1

0

1

1

0

Σ= {0,1}. Q = { s,a,b,c }. s = s. F = { a,c }

δ(s,0) = {s,a}, δ(s,1) = {a,b} 
δ(a,0) = {a}, δ(a,1) = Ø  
δ(b,0) = {c}, δ(b,1) = Ø  
δ(c,0) = {b}, δ(c,1) = {s,a,b}

C
S

37
4

NFA : Formally

Similar to a DFA : N = (Σ, Q, δ, s, F)  
Σ: alphabet Q: state space s: start state F: set of accepting states#

δ : Q × Σ → �(Q)

δ(q, a) = set of states N could move to from q, on input a

for w = a1… at if ∃ q1,…,qt+1, such that  
q1 = q, qt+1 = p, and ∀ i ∈ [1, t], qi+1 ∈ δ(qi,ai)#

N accepts w if for a p ∈ F #

L(N) = { w | N accepts w }
13

Same definition
for DFAs, but
with “=“ here

wq � p

ws � p

C
S

37
4

e.g., δ†({a,c},1) = ? .#
δ†({s,a,c},0) = ?

Given a current set of states, the next set of states:  
δ† : �(Q) × Σ → �(Q)

Keeping Track of an NFA

14

[s]

10101010 1010 1010 1010

[b]

[c] [c]

[b]

[a] [a] [a][a]

[s][s]

{s,a,c}
{s,a,b}

as c

b

0

1
0

1

0,1

0

1

1

0

C
S

37
4

Keeping Track of an NFA
Given a current set of states, the next set of states: 

δ† : �(Q) × Σ → �(Q)#

Formally: δ†(T, a) = ∪q∈T δ(q,a)

How about the set of states that a string leads to? 

15

L(N) = { w | δ†*(s†, w) ∈ F†}

s† = {s}, F† = { T | T∩F ≠ Ø }

δ†*(T, ε) = T  
δ†*(T, au) = δ†*(δ†(T, a), u)

Exercise: 
Prove δ†*(T, w)  

 = { p | q � p, q ∈ T}w

C
S

37
4

L(N) = { w | δ†*(s†, w) ∈ F†}

Keeping Track of an NFA

 
δ† : �(Q) × Σ → �(Q) : transition for set of states on a symbol 
δ†* : �(Q) × Σ* → �(Q): transition for set of states on a string

16

Using a DFA!

s† = {s}, F† = { T | T∩F ≠ Ø }

DFA: MN = (Σ, �(Q), δ†, s†, F†)NFA: N = (Σ, Q, δ, s, F)

= L(MN)

δ†*(T, ε) = T  
δ†*(T, au) = δ†*(δ†(T, a), u)

C
S

37
4

NFAs & DFAs

NFA is a more general model than DFA

Any DFA can be trivially converted to an equivalent NFA
(i.e., accepting the same language)

by treating the output of the DFA’s transition function  
 as a singleton set

 Any NFA can be converted to an equivalent DFA
but this may exponentially increase the number of states

So, not a good way to construct a DFA in practice!

17

C
S

37
4

NFAs & DFAs

Equivalence with NFAs is still very useful to
understand DFAs!

e.g., We claimed: Every regular language has a DFA

We’ll prove this (next time) by showing that  
every regular language has an NFA

We need one more additional feature in an NFA for
that (and other applications)

18

C
S

37
4

In an ε-move an NFA changes its state by following
an arc labeled ε, without consuming an input symbol

e.g., an NFA that accepts the language of all strings over {a,..,z}
that end in colour or color

NFAs with ε-Moves

19

o u r
3 4 5 6

c o l
0 1 2

a-z

ε

a-z

o r
10 11 12c o l

7 8 9

o u r
3 4 5 6

c o l
0 1 2

a-z

ε

ε

s

C
S

37
4

In an ε-move an NFA changes its state by following
an arc labeled ε, without consuming an input symbol

e.g., an NFA that accepts the language of all strings over {a,..,z}
that end in colour or color

NFAs with ε-Moves

20

o u r
3 4 5 6

c o l
0 1 2

a-z

ε

For an NFA with ε-moves, q � p  
if ∃ a1,…, at ∈ Σ ∪ {ε } and ∃ q1,…,qt+1, such that  

w = a1… at, q1 = q, qt+1 = p, and ∀ i ∈ [1, t], qi+1 ∈ δ(qi,ai)#

w

C
S

37
4

NFAs with ε-Moves
δ : Q × (Σ ∪ {ε}) → �(Q)#

ε-closure of a state q: all states reachable from q
without consuming any input

e.g. ε-closure of state 4 is { 4, 5 }  
 
 
 

e.g., ε-closure of state 1 is { 1, 2, 3, 0 }

21

o u r
3 4 5 6

c o l
0 1 2

a-z

ε

ε

ε

o u r
3 4 5 6

c o l
0 1 2

a-z

ε ε

ε

C
S

37
4

NFAs with ε-Moves
δ : Q × (Σ ∪ {ε}) → �(Q)#

ε-closure of a set of states T: all states reachable from
some state T in without consuming any input

e.g. Below, ε-closure of the set {3,4} is { 3,2,0,4,5 }"

Cε : �(Q) → �(Q)

22 ε

ε

o u r
3 4 5 6

c o l
0 1 2

a-z

ε ε

ε

εCε(S) = { p | q � p for some q ∈ S }

C
S

37
4

Can easily modify an NFA with ε-moves N,  
to get an NFA Nnew without ε-moves"

δnew(q, a) = Cε(δ(Cε({q}), a))#

e.g.: δnew(1,o) = ? .#

Fnew = F, if Cε({s})∩F = Ø  
 Fnew = F ∪ {s}, otherwise.#

Theorem: L(N) = L(Nnew)

ε-Moves is Syntactic Sugar

23 ε

ε

o u r
3 4 5 6

c o l
0 1 2

a-z

ε ε

ε

{0,2,3,4,5}
wq �N p ⇔ q �Nnew p w

Prove by induction:  
 for |w|≥1,

C
S

37
4

NFAs & DFAs
3 “equivalent” computational models: DFAs,  

NFAs w/o ε-moves, NFAs (w/ ε-moves)

Equivalent: the class of languages that can be computed in each
model is the same

Because a “program” in one model can be “compiled” into
one in any other model

There may be an “efficiency loss”:

NFAs (w/ ε-moves) → NFAs w/o ε-moves :  
Number of transitions can increase (polynomially)

NFAs w/o ε-moves → DFAs :  
Number of state can increase (exponentially)

24

