Non-deterministic Finite Automata

Lecture 4

NFAs

NFAs vs. DFAs

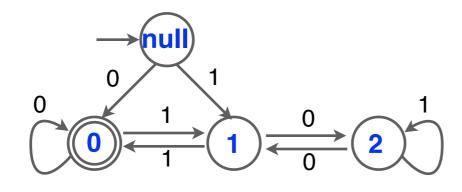
NFAs with ε -moves

Closure Properties of class of languages accepted by NFAs/DFAs

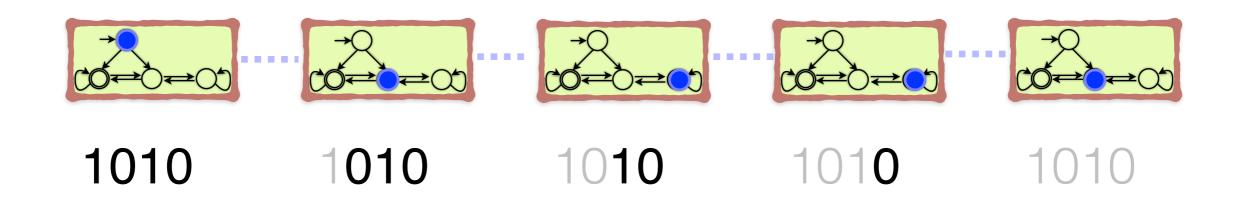
Tracking Computation

current state and remaining input

A computation's *configuration* evolves in each time-step



on input 1010

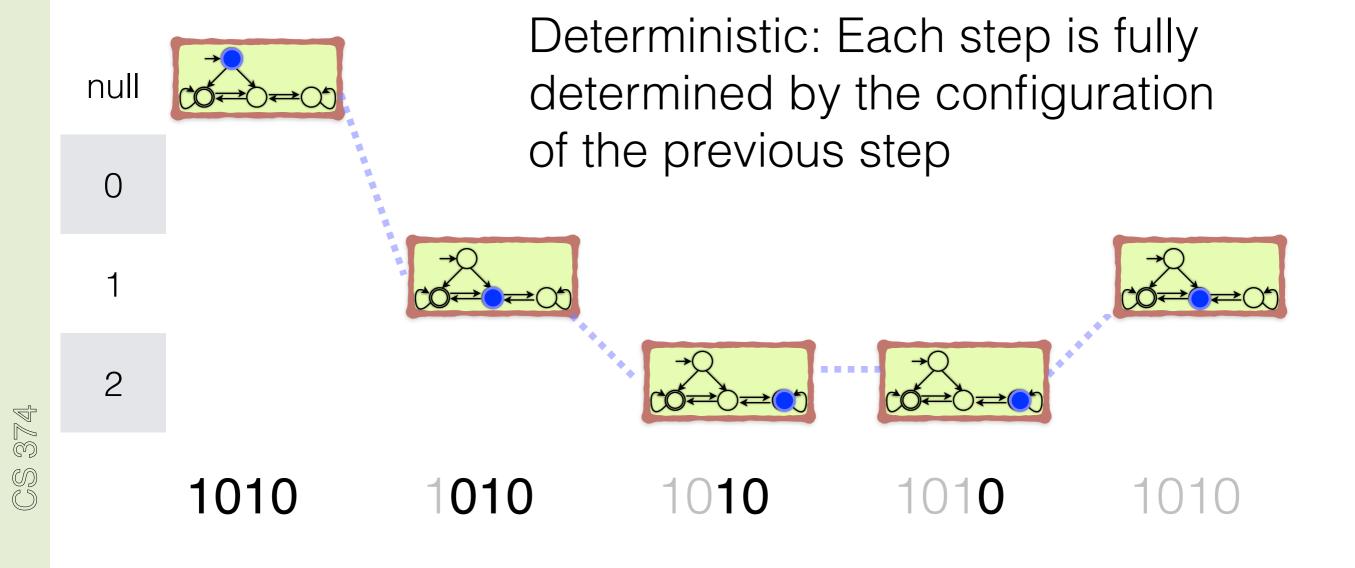


CS 374

Tracking Computation

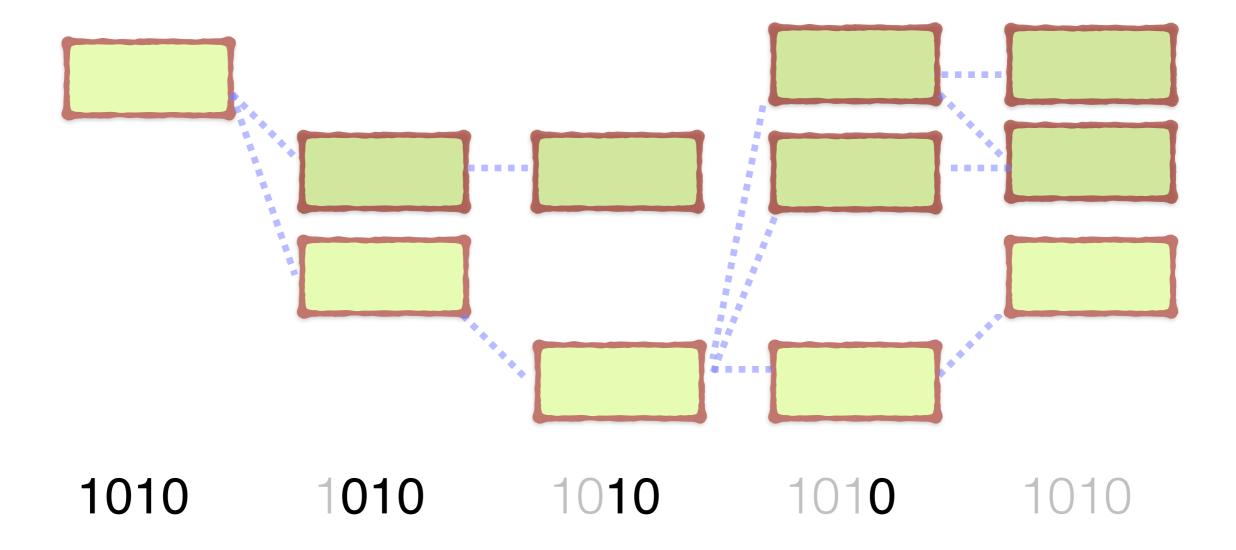
current state and remaining input

A computation's configuration evolves in each time-step



Non-Determinism

At each step the computation is allowed to proceed in multiple ways (zero, one or more)



374

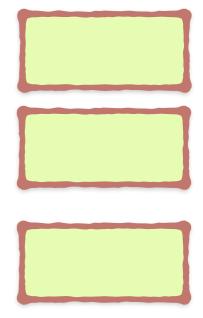
Non-Determinism

At each step the computation is allowed to proceed in multiple ways (zero, one or more)

At the end, left with zero or more possible configurations (each with its own output)

What is the outcome of the entire computation?

Accept iff at least one configuration accepts



CS 374

6

How about other rules — e.g., accept iff all the configurations accept, accept iff a majority accepts etc.?

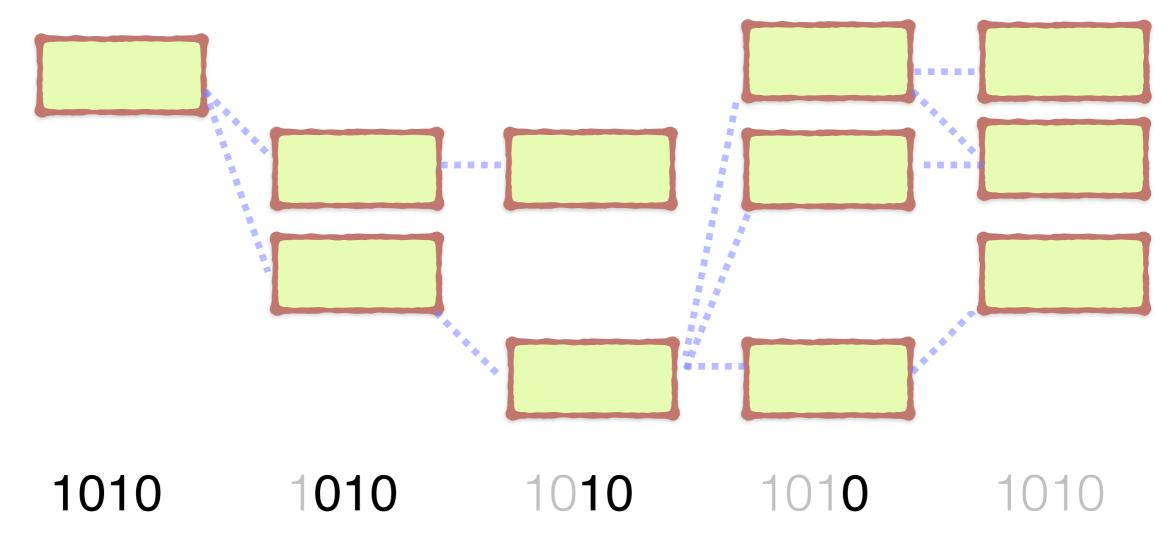
Sure, but they have other names — e.g., co-non-deterministic computation, probabilistic computation etc.

Non-Determinism

will see some Unrealistic model of computation!

uses today

A very powerful "high-level" programming language

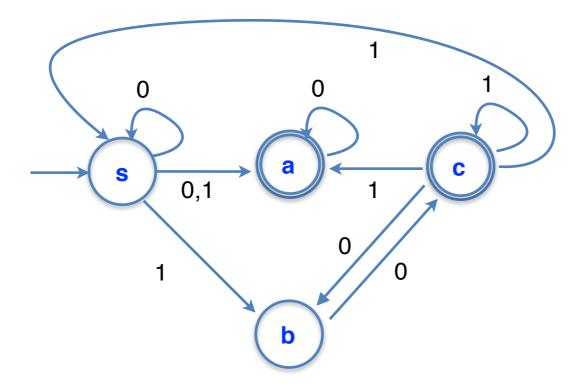


374

Non-Deterministic FA

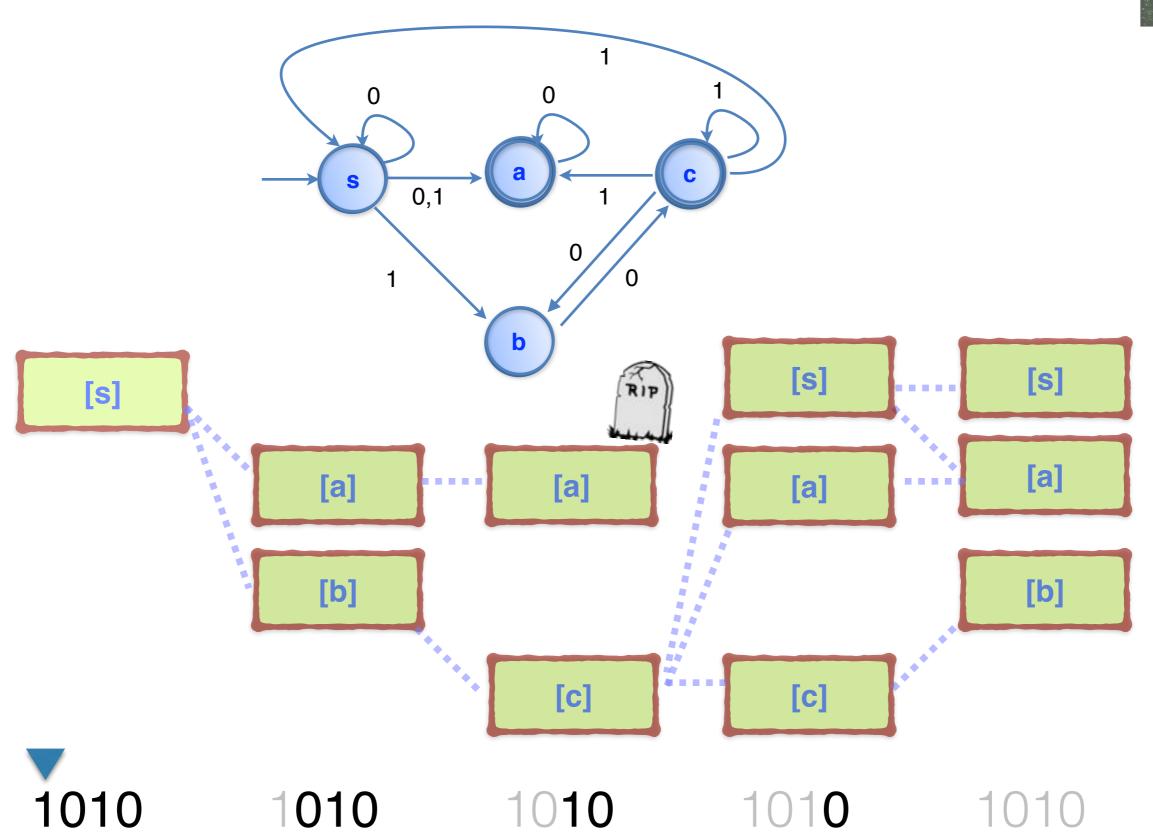
What can be non-deterministic about an FA?

At a given state, on a given input, multiple "next-states"



374

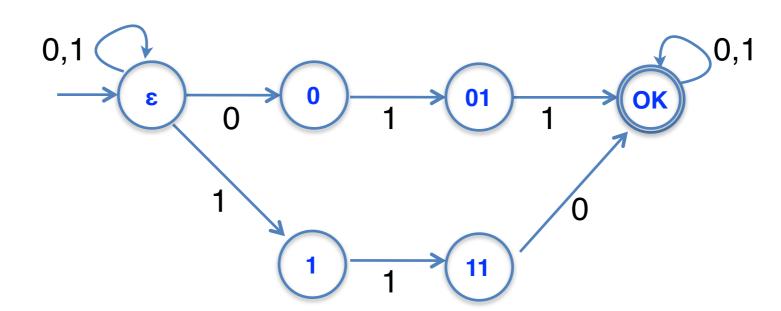
Non-Deterministic FA



CS 374

NFA : Examples

Design an NFA to recognize $L(M) = \{w \mid w \text{ contains 011 or 110} \}$



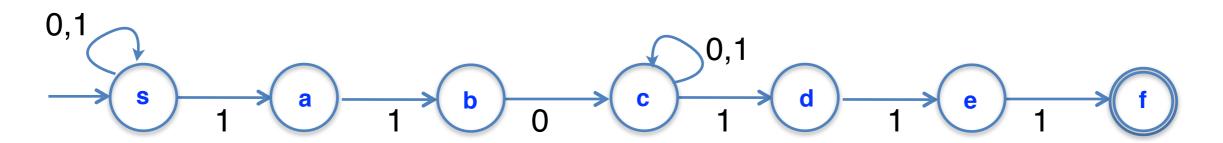
For any input string, if it contains 011 or 110, then there is *some* computation path, that ends in the final state

And vice versa

374

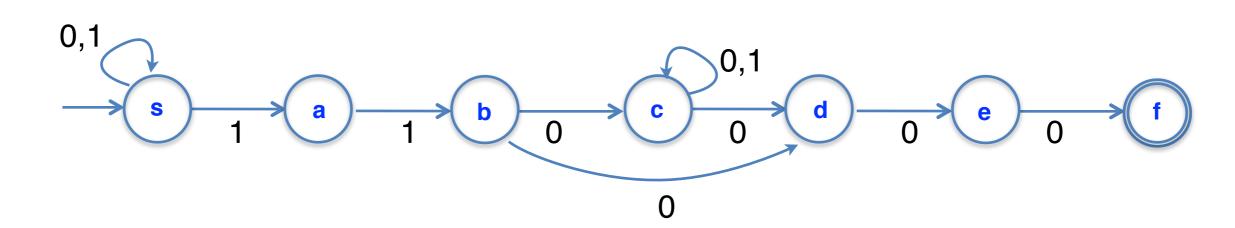
NFA : Examples

Design an NFA to recognize $L(M) = \{w \mid w \text{ has the substring 110 and ends in 111} \}$



Design an NFA to recognize $L(M) = \{w \mid w \text{ has the substring 110 and ends in 000 }\}$

374

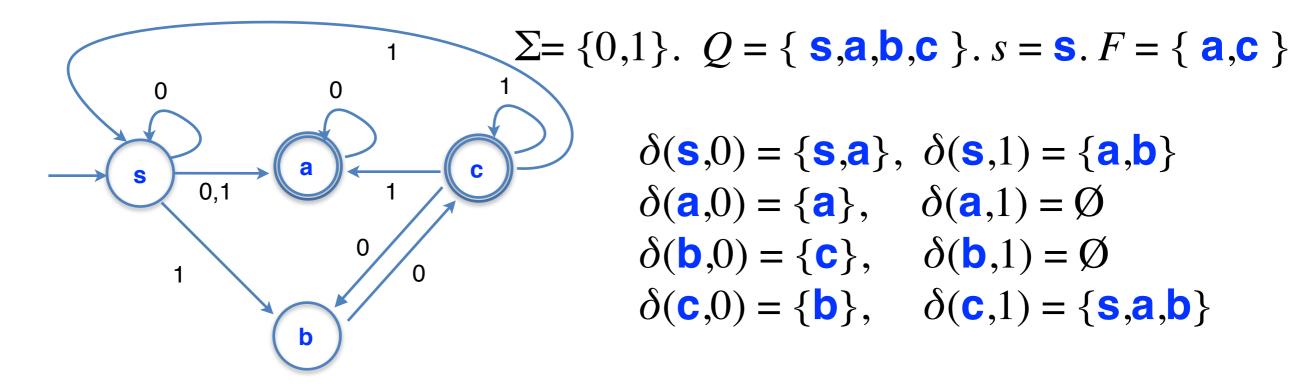


NFA : Formally

Similar to a DFA : $N = (\Sigma, Q, \delta, s, F)$ Σ : alphabet Q: state space s: start state F: set of accepting states

 $\delta: Q \times \Sigma \to \mathcal{P}(Q)$

 $\delta(q, a) = \underline{set}$ of states N could move to from q, on input a



12

374

NFA : Formally

Similar to a DFA : $N = (\Sigma, Q, \delta, s, F)$ Σ : alphabet Q: state space s: start state F: set of accepting states

 $\delta: Q \times \Sigma \to \mathcal{P}(Q)$

 $\delta(q, a) = \underline{set}$ of states N could move to from q, on input a

$$q \stackrel{w}{\leadsto} p \text{ for } w = a_1 \dots a_t \text{ if } \exists q_1, \dots, q_{t+1}, \text{ such that}$$

$$q_1 = q, q_{t+1} = p, \text{ and } \forall i \in [1, t], q_{i+1} \in \delta(q_i, a_i)$$

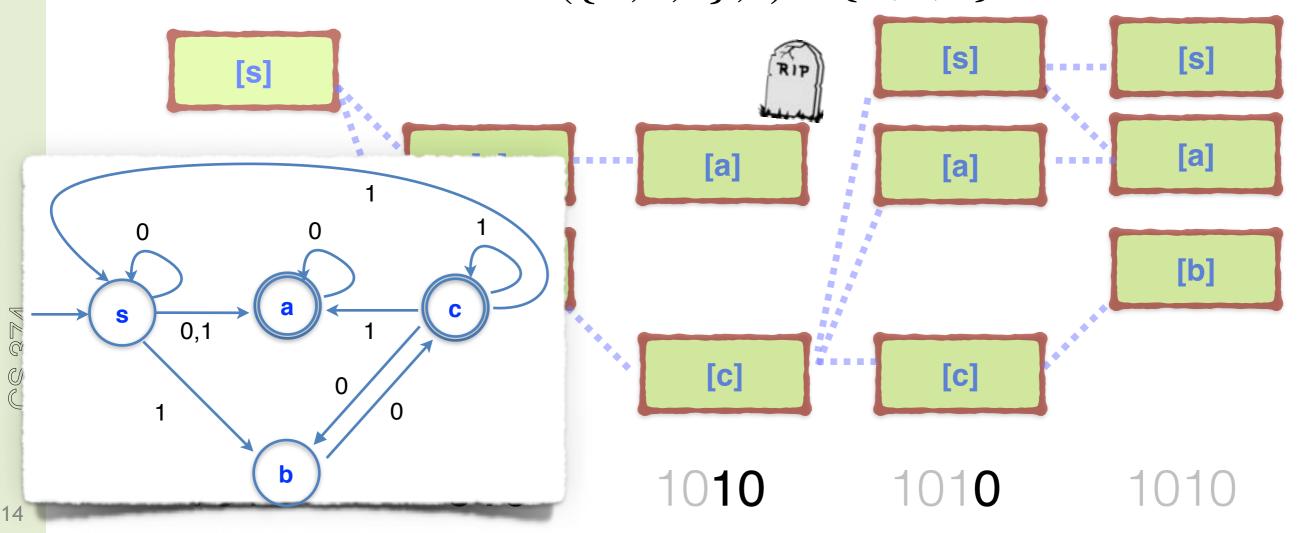
$$N \text{ accepts } w \text{ if } s \stackrel{w}{\rightsquigarrow} p \text{ for } a p \in F$$

$$L(N) = \{ w \mid N \text{ accepts } w \}$$
Same definition for DFAs, but with "=" here

Keeping Track of an NFA

Given a *current set* of states, the next *set* of states:

 $\delta^{\dagger} : \mathcal{P}(Q) \times \Sigma \rightarrow \mathcal{P}(Q)$ e.g., $\delta^{\dagger}(\{a,c\},1) = \{s,a,c\}$ $\delta^{\dagger}(\{s,a,c\},0) = \{s,a,b\}$



Keeping Track of an NFA

Given a *current set* of states, the next *set* of states:

$\delta^{\dagger}:\mathcal{P}(Q)\times\Sigma \twoheadrightarrow \mathcal{P}(Q)$

Formally:
$$\delta^{\dagger}(T, a) = \bigcup_{q \in T} \delta(q, a)$$

How about the set of states that a string leads to?

$$\delta^{\dagger}*(T, \varepsilon) = T$$

$$\delta^{\dagger}*(T, au) = \delta^{\dagger}*(\delta^{\dagger}(T, a), u)$$
Exercise:
$$Prove \ \delta^{\dagger}*(T, w)$$

$$= \{ p \mid q \stackrel{W}{\rightsquigarrow} p, q \in T \}$$

 $L(N) = \{ w \mid \delta^{\dagger *}(s^{\dagger}, w) \in F^{\dagger} \}$

Keeping Track of an NFA Using a DFA!

NFA: $N = (\Sigma, Q, \delta, s, F)$ DFA: $M_N = (\Sigma, \mathcal{P}(Q), \delta^{\dagger}, s^{\dagger}, F^{\dagger})$ $\delta^{\dagger} : \mathcal{P}(Q) \times \Sigma \rightarrow \mathcal{P}(Q)$: transition for set of states on a symbol $\delta^{\dagger*} : \mathcal{P}(Q) \times \Sigma^* \rightarrow \mathcal{P}(Q)$: transition for set of states on a string

$$\begin{split} \delta^{\dagger *}(T,\varepsilon) &= T\\ \delta^{\dagger *}(T,au) &= \delta^{\dagger *}(\delta^{\dagger}(T,a),u) \end{split}$$

 $s^{\dagger} = \{s\}, F^{\dagger} = \{ T \mid T \cap F \neq \emptyset \}$

 $L(N) = \{ w \mid \delta^{\dagger *}(s^{\dagger}, w) \in F^{\dagger} \} = L(M_N)$

NFAs & DFAs

NFA is a more general model than DFA

Any DFA can be trivially converted to an equivalent NFA (i.e., accepting the same language)

by treating the output of the DFA's transition function as a *singleton set*

Any NFA can be converted to an equivalent DFA but this *may* exponentially increase the number of states

So, not a good way to construct a DFA in practice!

NFAs & DFAs

Equivalence with NFAs is still very useful to understand DFAs!

e.g., We claimed: Every regular language has a DFA

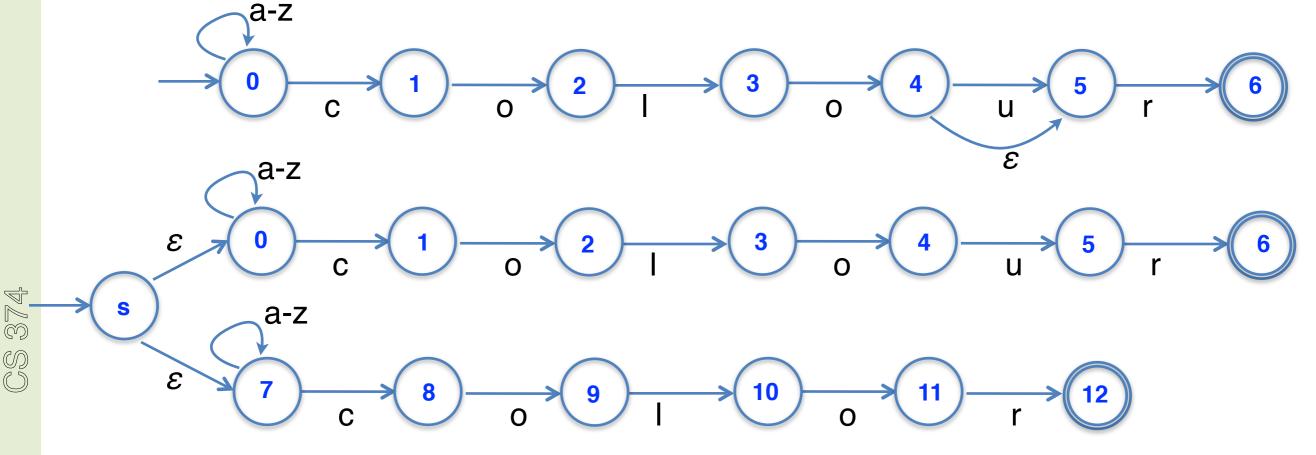
We'll prove this (next time) by showing that every regular language has an NFA

We need one more additional feature in an NFA for that (and other applications)

NFAs with ε -Moves

In an ε -move an NFA changes its state by following an arc labeled ε , *without consuming an input symbol*

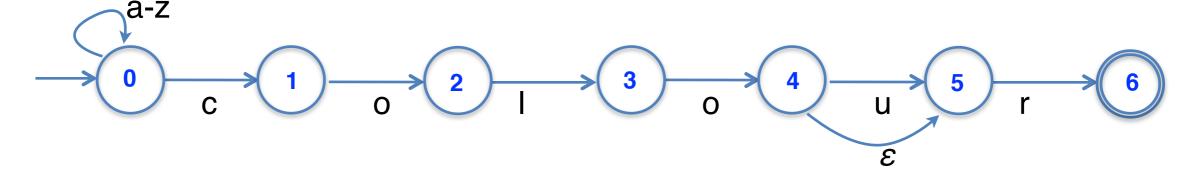
e.g., an NFA that accepts the language of all strings over {a,..,z} that end in colour or color



NFAs with ε -Moves

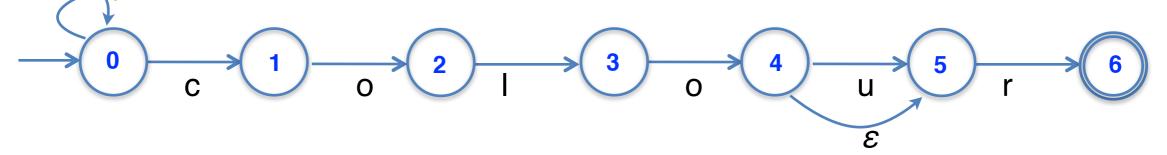
In an ε -move an NFA changes its state by following an arc labeled ε , *without consuming an input symbol*

e.g., an NFA that accepts the language of all strings over {a,..,z} that end in colour or color



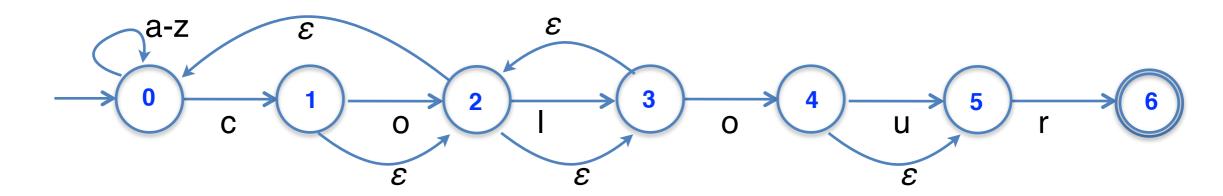
For an NFA with ε -moves, $q \stackrel{W}{\rightsquigarrow} p$ if $\exists a_1, \dots, a_t \in \Sigma \cup \{\varepsilon\}$ and $\exists q_1, \dots, q_{t+1}$, such that $w = a_1 \dots a_t, q_1 = q, q_{t+1} = p$, and $\forall i \in [1, t], q_{i+1} \in \delta(q_i, a_i)$

NFAS with \varepsilon-Moves $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to \mathcal{P}(Q)$ ε -closure of a state q: all states reachable from qwithout consuming any input e.g. ε -closure of state 4 is $\{4, 5\}$



e.g., *ε*-closure of state **1** is { **1**, **2**, **3**, **0** }

374



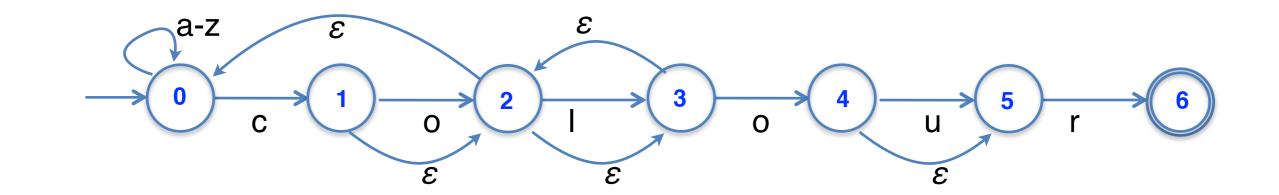
NFAs with ε -Moves $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow \mathcal{P}(Q)$

ɛ-closure of a set of states *T*: all states reachable from *some* state *T* in without consuming any input

e.g. Below, *E*-closure of the set {3,4} is { 3,2,0,4,5 }

 $C_{\varepsilon}: \mathcal{P}(Q) \rightarrow \mathcal{P}(Q)$

$$C_{\varepsilon}(S) = \{ p \mid q \stackrel{\varepsilon}{\rightsquigarrow} p \text{ for some } q \in S \}$$



22

374

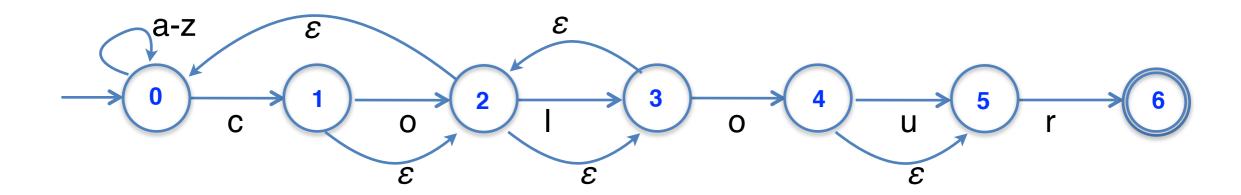
ε-Moves is Syntactic Sugar

Can easily modify an NFA with ε -moves N, to get an NFA N_{new} without ε -moves

 $\delta_{\text{new}}(q, a) = C_{\varepsilon}(\delta(C_{\varepsilon}(\{q\}), a))$ Prove by induction: for $|w| \ge 1$, $q \xrightarrow{W}{\longrightarrow}_{N} p \Leftrightarrow q \xrightarrow{W}{\longrightarrow}_{Nnew} p$

 $F_{\text{new}} = F$, if $C_{\varepsilon}(\{s\}) \cap F = \emptyset$ $F_{\text{new}} = F \cup \{s\}$, otherwise.

Theorem: $L(N) = L(N_{new})$



CS 374

NFAs & DFAs

Equivalent: the class of languages that can be computed in each model is the same

Because a "program" in one model can be "compiled" into one in any other model

There may be an "efficiency loss":

NFAs (w/ ε -moves) \rightarrow NFAs w/o ε -moves : Number of transitions can increase (polynomially)

NFAs w/o ε -moves \rightarrow DFAs : Number of state can increase (exponentially)