
Limitations of  
Finite Automata

Lecture 6

1

C
S

37
4

Today

Proving that certain languages need DFAs with a large
number of states

Proving that certain (“easy”) languages cannot be
decided using DFAs at all!

Using Closure Properties of regular languages to
reason about non-regularity

2

C
S

37
4

Need for Memory

e.g., Language L = { 033 } (just one string, of 33 0’s)

“Clearly” a DFA for L will need to  
keep count of the 0’s seen, up to 33

35 states (count = 0,1,…,33 and “crashed”)

How do we rule out the possibility of a clever DFA with
fewer states?

3

C
S

37
4

Need for Memory
Suppose M with d < 35 states s.t. L(M) = L = { 033 }

Consider δ*(s,w) for w ∈ { 0i | i ∈ [0,34] }!

Pigeonhole Principle ⇒ at least two values i < j s.t.
δ*(s,0i) = δ*(s,0j) = q (say)

Let u = 0i and v = 0j

Let x = 0k where k = 33 — i (k ≥ 0 since i < j ≤ 34).

ux ∈ L ⇒ δ*(s, ux) ∈ F and vx ∉ L ⇒ δ*(s, vx) ∉ F"

But δ*(s, ux) = δ*(q, x) = δ*(s, vx) !
4

C
S

37
4

Abstracting the proof
Consider δ*(s,w) for 
 w ∈ { 0i | i ∈ [0,34] }!

By the pigeonhole principle, 
at least two values i < j s.t.  
δ*(s,0i) = δ*(s,0j) = q (say)

Let u = 0i and v = 0j

Let x = 0k where k = 33 — i  
(k ≥ 0 since i < j ≤ 34).

ux ∈ L ⇒ δ*(s, ux) ∈ F and  
vx ∉ L ⇒ δ*(s, vx) ∉ F"

But δ*(s, ux) = δ*(q, x) = δ*(s, vx)  
! 5

Come up with a set S, |S| = d!

s.t. for any two distinct 
 u, v ∈ S

∃ x s.t "

| { ux , vx } ∩ L | = 1"

Proves that any DFA for L  
must have at least d states

C
S

37
4

Defender 
(claim: ∃ DFA for L with < d states)

Challenger 
(claim: no DFA for L has < d states)

Picks a set S ⊆ Σ*, |S| ≥ d

Picks distinct u,v ∈S

Picks x ∈ Σ*

Challenger wins if |{ux,vx}∩L | = 1. Else Defender wins

Abstracting the proof 
as a Game!

Theorem : If there is a DFA for L with < d states, then 
 Defender has a winning strategy in SuvxGame(L,d)

6

SuvxGame(L,d)

S

x

u,v

∀S ⊆ Σ*, |S| ≥ d, ∃u,v ∈ S, u≠v, ∀x ∈ Σ*, ux ∈ L⇔ vx ∈ L

C
S

37
4

Strings Indistinguishable to a DFA
Let M = (Σ,Q,δ,s,F) be an arbitrary DFA

Suppose δ*(s,u) = δ*(s,v) = q"

Then, for every x, δ*(s,ux) = δ*(s,vx) = δ*(q,x)"

i.e., M “can’t tell the difference” between having seen u and v

In particular, for every x, ux ∈ L(M) ⇔ vx ∈ L(M)

7

Proof : Winning strategy: Let L=L(M), M = (Σ,Q,δ,s,F), |Q| < d.
Receive S. Since |S| > |Q|, by pigeonhole principle, ∃ u,v ∈ S, s.t.,
δ*(s,u)=δ*(s,v). Send (u,v). By (*), Challenger can’t win the game.

(*)

Theorem : If there is a DFA for L with < d states, then 
 Defender has a winning strategy in SuvxGame(L,d)

C
S

37
4

Proving Lowerbound on DFA size

Corollary : If the Challenger has a winning strategy in the  
 SuvxGame(L,d) (so that the Defender doesn’t),  
 then there is no DFA for L with < d states.

8

To prove that L has no DFA with < d states, enough to show a
winning strategy for the Challenger in SuvxGame(L,d)

∀S ⊆ Σ*, |S| ≥ d, ∃u,v ∈ S, u≠v, ∀x ∈ Σ*, ux ∈ L⇔ vx ∈ L

∃S ⊆ Σ*, |S| ≥ d, ∀u,v ∈ S, u≠v, ∃x ∈ Σ*, |{ux,vx}∩L| = 1

Fooling Set S: ∀u,v ∈ S, u≠v, ∃x ∈ Σ*, |{ux,vx}∩L| = 1

Fooling set of size d

Theorem : If there is a DFA for L with < d states, then 
 Defender has a winning strategy in SuvxGame(L,d)

C
S

37
4

Example

9

Lk = { w | w ends in 1(0+1)k—1 }"

An NFA with k+1 states: Q = {0,1,…,k}, s = 0, F = {k}. 
δ(0,0) = {0}, δ(0,1) = {0,1}. δ(i,b) = {i+1} for 1 ≤ i < k and b ∈ {0,1}.

DFA? Intuitively, need to remember last k bits, as any of them
could turn out to be at the kth position from end. DFA with a state
for each possible prefix: (1+1+2+4+…+2k—1) = 2k states.

Claim: Any DFA for Lk must have at least d = 2k states!

Winning strategy for challenger?
S = {0,1}k . For any u,v, let x be as follows.

There is some position where u, v disagree. Say ith position from
right (1 ≤ i ≤ k). Let x = 0k—i. Then ux, vx disagree at the kth position
from right. Hence, exactly one of them will be in Lk.

C
S

37
4

Non-Regular Languages
e.g., Language L = { 0n1n | n ≥ 0 }

“Clearly” an automaton will need to count the number
of 0’s and match it against the number of 1’s  

(if it is scanning the input bit by bit)

Cannot do that in a DFA

How do we prove it?

Show an infinite fooling set!

10

C
S

37
4

Defender 
(claim: ∃ DFA for L)

Challenger 
(claim: no DFA for L)

Picks

Picks a set S ⊆ Σ*, |S| ≥ d

Picks distinct u,v ∈S

Picks x ∈ Σ*

Challenger wins if |{ux,vx}∩L | = 1. Else Defender wins

The Game

Theorem : If there is a DFA for L, then Defender has a
winning strategy in dSuvxGame(L)

11

dSuvxGame(L)

S

x

u,v

∃d∈ Z+ ∀S ⊆ Σ*, |S| ≥ d, ∃u,v ∈ S, u≠v, ∀x ∈ Σ*, ux ∈ L⇔ vx ∈ L

d

C
S

37
4

Proving no DFA

Corollary : If the Challenger has a winning strategy in the
dSuvxGame(L) (so that the Defender doesn’t), then there is no
DFA for L.

12

Theorem : If there is a DFA for L, then the Defender has a
winning strategy in dSuvxGame(L)

To prove that L has no DFA, enough to show  
a winning strategy for the Challenger in dSuvxGame(L)

∀d∈ Z+ ∃S ⊆ Σ*, |S| ≥ d, ∀u,v ∈ S, u≠v, ∃x ∈ Σ*, |{ux,vx}∩L| = 1

Fooling Set S: ∀u,v ∈ S, u≠v, ∃x ∈ Σ*, |{ux,vx}∩L| = 1

an infinite Fooling set

∃d∈ Z+ ∀S ⊆ Σ*, |S| ≥ d, ∃u,v ∈ S, u≠v, ∀x ∈ Σ*, ux ∈ L⇔ vx ∈ L

C
S

37
4

Non-Regularity: Examples

13

L = { 0n1n | n ≥ 0 }"

Winning strategy for challenger?

S = {0}* . For any u,v, let x= 1|u| so that ux ∈ L, vx ∉ L.

L = { w | w has equal number of 0s and 1s }!

Same winning strategy as above

L = { 0p | p is a prime number }!

Same fooling set as above! S = {0}*

Rest of the strategy?

C
S

37
4

Non-Regularity: Examples

14

L = { 0p | p is a prime number }!

Fooling set S = {0}*. Rest of the strategy?

Given u=0i, v=0j, (say, i < j, w.l.o.g.) find a non-negative number
k s.t. exactly one of i+k and j+k is prime. Then, let x=0k.

Solution 1: Fact: We can find arbitrarily large gaps between
successive prime numbers, for arbitrarily large prime numbers.

Let Δ = j—i. Let p1 and p2 be successive primes s.t. p1 ≥ i and
p2—p1 > Δ. Let k = p1—i. Then k+i = p1 is prime, k+j = p1 + Δ < p2
is not.

Solution 2: Let Δ = j—i. Let p ≥ i be a prime, Note that p+rΔ is
prime for r=0, and non-prime for r = p. Hence ∃ some r ∈ [0, p]
s.t. p+rΔ is prime but p + (r+1)Δ is a non-prime. Set k = p+rΔ—i.

Fun exercise!
Hint: primorial

C
S

37
4

Non-Regularity via Closure

Recall: Several operations on languages that
preserve regularity

If L1, L2 regular, so is L1 op L2

Gives a way to prove non-regularity!

Suppose we already knew that L2 is regular,  
but L1 op L2 is not.

Then L1 is not regular!

15

C
S

37
4

Non-Regularity: Examples

16

Let L = { w | w has unequal number of 0s and 1s }.!

We know that L̅ is not regular. Hence L can’t be.

Let L = { 0n1n | n ≥ 0 } ∪ { w | |w| is odd }

Let L* = {0n1n | n ≥ 0 } and L** = {w | |w| is odd }. 
Then L* = L — L**. Now, L** is regular. If L regular, L* will be too!

Let L1 = { 0n1n | n ≥ 0 }. Let L = { w | w ∈ L1 and |w| ≡ 0 (mod 3) }.  
Prove that L is not regular."

Use L = L1 ∩ L2 where L2 = { w | |w| ≡ 0 (mod 3) } ?

No! (L1 not regular, L2 regular) ⇏ (L1 ∩ L2 not regular) !

e.g., L2 is a finite set

C
S

37
4

Non-Regularity via Closure

Recall: Several operations on
languages that preserve

regularity

If L1, L2 regular, so is L1 op L2

Gives a way to prove  
non-regularity!

Suppose we already knew that
L2 is regular, but L1 op L2 is not.

Then L1 is not regular!
17

op

L1

L2

Lm

L ✗

✓

✓
?

:

C
S

37
4

Non-Regularity: Examples

18

Let L1 = { 0n1n | n ≥ 0 }. Let L = { w | w ∈ L1 and |w| ≡ 0 (mod 3) }.  
Prove that L is not regular.!

Let L* = {0}L{1}. and L** = {00}L{11}.

If L is regular, so are L* and L**

But L1 = L ∪ L* ∪ L**

Since L1 not regular, L is not regular

Or directly use the fooling set argument: e.g., S = { 03i | i ≥ 0}

C
S

37
4

How to Pick a Fooling Set

19

Make sure you don’t put in any two strings which can let
the defender win!

In particular, all the strings you include (except maybe
one) should be prefixes of strings in the language

e.g., for L = { 0n1n | n ≥ 0 } don’t include 1 and 10 (say)

Intuitively, each prefix in the fooling set has a different
value for a parameter that a machine will need to

remember

C
S

37
4

Non-Regular  
⇒ Infinite Fooling Set?

20

We saw that infinite fooling set ⇒ non-regular. Converse?
(Will this proof strategy always work, in principle?  

Or maybe for some non-regular languages the Defender
has a winning strategy in dSuvxGame?)

Myhill-Nerode theorem!

Converse does hold! 
(Defender has a winning strategy only if L is regular.)

But not necessarily easy (or even possible) to compute the
winning strategy from say, an English description.

Optional Reading

C
S

37
4

Defender 
(claim: ∃ DFA for L)

Challenger 
(claim: no DFA for L)

Picks

Picks w ∈ L, |w| ≥ d
x,y,z ∈ Σ* s.t.  

w=xyz, |xy| ≤ d, |y| ≥ 1
Picks i ∈ N

Challenger wins if

FYI: Another Game

Theorem : If there is a DFA for L, then Defender has a winning
strategy in PumpingGame(L). Hence if Challenger has a winning
strategy, L not regular. [Converse doesn’t hold.]

21

PumpingGame(L)

w

i

x,y,z

d

