
Limitations of  
Finite Automata

Lecture 6
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Today

Proving that certain languages need DFAs with a large 
number of states 

Proving that certain (“easy”) languages cannot be 
decided using DFAs at all! 

Using Closure Properties of regular languages to 
reason about non-regularity
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Need for Memory

e.g., Language L = { 033 } (just one string, of 33 0’s) 

“Clearly” a DFA for L will need to  
keep count of the 0’s seen, up to 33 

35 states (count = 0,1,…,33 and “crashed”) 

How do we rule out the possibility of a clever DFA with 
fewer states?
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Need for Memory
Suppose M with d < 35 states s.t. L(M) = L = { 033 } 

Consider δ*(s,w) for w ∈ { 0i | i ∈ [0,34] }!

Pigeonhole Principle ⇒ at least two values i < j s.t. 
δ*(s,0i) = δ*(s,0j) = q (say) 

Let u = 0i and  v = 0j 

Let x = 0k where k = 33 — i  (k ≥ 0 since i < j ≤ 34). 

ux ∈ L ⇒ δ*(s, ux) ∈ F and vx ∉ L ⇒ δ*(s, vx) ∉ F"

But δ*(s, ux) = δ*(q, x) = δ*(s, vx)  !
4
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Abstracting the proof
Consider δ*(s,w) for 
 w ∈ { 0i | i ∈ [0,34] }!

By the pigeonhole principle, 
at least two values i < j s.t.  
δ*(s,0i) = δ*(s,0j) = q (say) 

Let u = 0i and  v = 0j 

Let x = 0k where k = 33 — i   
(k ≥ 0 since i < j ≤ 34). 

ux ∈ L ⇒ δ*(s, ux) ∈ F and  
vx ∉ L ⇒ δ*(s, vx) ∉ F"

But δ*(s, ux) = δ*(q, x) = δ*(s, vx)  
! 5

Come up with a set S, |S| = d!

s.t. for any two distinct 
 u, v ∈ S  

∃ x s.t "

| { ux , vx } ∩  L | = 1"

Proves that any DFA for L  
must have at least d states
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Defender 
(claim: ∃ DFA for L with < d states)

Challenger 
(claim: no DFA for L has < d states)

Picks a set S ⊆ Σ*, |S| ≥ d

Picks distinct u,v ∈S

Picks x ∈ Σ*

Challenger wins if |{ux,vx}∩L | = 1. Else Defender wins

Abstracting the proof 
as a Game!

Theorem : If there is a DFA for L with < d states, then 
                  Defender has a winning strategy in SuvxGame(L,d)
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SuvxGame(L,d)

S

x

u,v

∀S ⊆ Σ*, |S| ≥ d,  ∃u,v ∈ S, u≠v,   ∀x ∈ Σ*,    ux ∈ L⇔ vx ∈ L
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Strings Indistinguishable to a DFA
Let M = (Σ,Q,δ,s,F)  be an arbitrary DFA 

Suppose δ*(s,u) = δ*(s,v) = q"

Then, for every x, δ*(s,ux) = δ*(s,vx) = δ*(q,x)"

i.e., M “can’t tell the difference” between having seen u and v 

In particular, for every x, ux ∈ L(M) ⇔ vx ∈ L(M)
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Proof : Winning strategy: Let L=L(M), M = (Σ,Q,δ,s,F), |Q| < d. 
Receive S. Since |S| > |Q|, by pigeonhole principle, ∃ u,v ∈ S, s.t., 
δ*(s,u)=δ*(s,v). Send (u,v). By (*), Challenger can’t win the game.

(*)

Theorem : If there is a DFA for L with < d states, then 
                  Defender has a winning strategy in SuvxGame(L,d)
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Proving Lowerbound on DFA size

Corollary : If the Challenger has a winning strategy in the  
                   SuvxGame(L,d)  (so that the Defender doesn’t),  
                   then there is no DFA for L with < d states.
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To prove that L has no DFA with < d states, enough to show a 
winning strategy for the Challenger in SuvxGame(L,d)

∀S ⊆ Σ*, |S| ≥ d,  ∃u,v ∈ S, u≠v,   ∀x ∈ Σ*,    ux ∈ L⇔ vx ∈ L

∃S ⊆ Σ*, |S| ≥ d,  ∀u,v ∈ S, u≠v,   ∃x ∈ Σ*,  |{ux,vx}∩L| = 1

Fooling Set S:  ∀u,v ∈ S, u≠v,   ∃x ∈ Σ*,  |{ux,vx}∩L| = 1

Fooling set of size d

Theorem : If there is a DFA for L with < d states, then 
                  Defender has a winning strategy in SuvxGame(L,d)
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Example
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Lk = { w | w ends in 1(0+1)k—1 }"

An NFA with k+1 states: Q = {0,1,…,k}, s = 0, F = {k}. 
δ(0,0) = {0}, δ(0,1) = {0,1}. δ(i,b) = {i+1} for 1 ≤ i < k and b ∈ {0,1}. 

DFA? Intuitively, need to remember last k bits, as any of them 
could turn out to be at the kth position from end. DFA with a state 
for each possible prefix: (1+1+2+4+…+2k—1) = 2k states. 

Claim: Any DFA for Lk must have at least d = 2k states! 

Winning strategy for challenger?  
S = {0,1}k . For any u,v, let x be as follows. 

There is some position where u, v disagree. Say ith position from 
right (1 ≤ i ≤ k). Let x = 0k—i. Then ux, vx disagree at the kth position 
from right. Hence, exactly one of them will be in Lk. 
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Non-Regular Languages
e.g., Language L = { 0n1n | n ≥ 0 } 

“Clearly” an automaton will need to count the number 
of 0’s and match it against the number of 1’s  

(if it is scanning the input bit by bit) 

Cannot do that in a DFA 

How do we prove it? 

Show an infinite fooling set!
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Defender 
(claim: ∃ DFA for L)

Challenger 
(claim: no DFA for L)

Picks 

Picks a set S ⊆ Σ*, |S| ≥ d

Picks distinct u,v ∈S

Picks x ∈ Σ*

Challenger wins if |{ux,vx}∩L | = 1. Else Defender wins

The Game

Theorem : If there is a DFA for L, then Defender has a 
winning strategy in dSuvxGame(L)
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dSuvxGame(L)

S

x

u,v

∃d∈ Z+ ∀S ⊆ Σ*, |S| ≥ d,  ∃u,v ∈ S, u≠v,   ∀x ∈ Σ*,    ux ∈ L⇔ vx ∈ L

d
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Proving no DFA

Corollary : If the Challenger has a winning strategy in the 
dSuvxGame(L)  (so that the Defender doesn’t), then there is no 
DFA for L.

12

Theorem : If there is a DFA for L, then the Defender has a 
winning strategy in dSuvxGame(L)

To prove that L has no DFA, enough to show  
a winning strategy for the Challenger in dSuvxGame(L)

∀d∈ Z+ ∃S ⊆ Σ*, |S| ≥ d,  ∀u,v ∈ S, u≠v,   ∃x ∈ Σ*,  |{ux,vx}∩L| = 1

Fooling Set S:  ∀u,v ∈ S, u≠v,   ∃x ∈ Σ*,  |{ux,vx}∩L| = 1

an infinite Fooling set

∃d∈ Z+ ∀S ⊆ Σ*, |S| ≥ d,  ∃u,v ∈ S, u≠v,   ∀x ∈ Σ*,    ux ∈ L⇔ vx ∈ L
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Non-Regularity: Examples
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L = { 0n1n | n ≥ 0 }"

Winning strategy for challenger?  

S = {0}* . For any u,v, let x= 1|u| so that ux ∈ L, vx ∉ L. 

L = { w | w has equal number of 0s and 1s }!

Same winning strategy as above 

L = { 0p | p is a prime number }!

Same fooling set as above! S = {0}* 

Rest of the strategy?
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Non-Regularity: Examples

14

L = { 0p | p is a prime number }!

Fooling set S = {0}*. Rest of the strategy?  

Given u=0i, v=0j, (say, i < j, w.l.o.g.) find a non-negative number 
k s.t. exactly one of i+k and j+k is prime. Then, let x=0k. 

Solution 1: Fact:  We can find arbitrarily large gaps between 
successive prime numbers, for arbitrarily large prime numbers. 

Let Δ = j—i. Let p1  and p2 be successive primes s.t. p1 ≥ i and  
p2—p1 > Δ. Let k = p1—i. Then k+i = p1 is prime, k+j = p1 + Δ < p2 
is not. 

Solution 2: Let Δ = j—i. Let p ≥ i be a prime, Note that p+rΔ  is 
prime for r=0, and non-prime for r = p. Hence ∃ some r ∈ [0, p] 
s.t. p+rΔ is prime but p + (r+1)Δ is a non-prime. Set k = p+rΔ—i.  

Fun exercise! 
Hint: primorial
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Non-Regularity via Closure

Recall: Several operations on languages that 
preserve regularity 

If L1, L2 regular, so is L1 op L2 

Gives a way to prove non-regularity! 

Suppose we already knew that L2 is regular,  
but L1 op L2 is not. 

Then L1 is not regular!

15
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Non-Regularity: Examples
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Let L =  { w | w has unequal number of 0s and 1s }.!

We know that L̅ is not regular. Hence L can’t be. 

Let L =  {  0n1n | n ≥ 0 } ∪ { w |  |w| is odd }  

Let L* = {0n1n | n ≥ 0 } and L** = {w | |w| is odd }. 
Then  L* = L — L**. Now, L** is regular. If L regular, L* will be too! 

Let L1 = { 0n1n | n ≥ 0 }. Let L =  { w | w ∈ L1 and |w| ≡ 0 (mod 3) }.  
Prove that L is not regular."

Use L = L1 ∩ L2 where L2 = { w |  |w| ≡ 0 (mod 3) } ? 

No!    (L1 not regular, L2 regular)  ⇏ (L1 ∩ L2 not regular) ! 

e.g., L2 is a finite set
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Non-Regularity via Closure

Recall: Several operations on 
languages that preserve 

regularity 

If L1, L2 regular, so is L1 op L2 

Gives a way to prove  
non-regularity! 

Suppose we already knew that 
L2 is regular, but L1 op L2 is not. 

Then L1 is not regular!
17

op

L1

L2

Lm

L ✗ 

✓

✓
?

:
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Non-Regularity: Examples

18

Let L1 = { 0n1n | n ≥ 0 }. Let L =  { w | w ∈ L1 and |w| ≡ 0 (mod 3) }.  
Prove that L is not regular.!

Let L* = {0}L{1}. and L** = {00}L{11}. 

If  L is regular, so are L* and L** 

But  L1 = L ∪ L* ∪ L** 

Since L1 not regular, L is not regular 

Or directly use the fooling set argument: e.g., S = { 03i | i ≥ 0}
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How to Pick a Fooling Set
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Make sure you don’t put in any two strings which can let 
the defender win! 

In particular, all the strings you include (except maybe 
one) should be prefixes of strings in the language 

e.g., for L = { 0n1n | n ≥ 0 } don’t include 1 and 10 (say) 

Intuitively, each prefix in the fooling set has a different 
value for a parameter that a machine will need to 

remember
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Non-Regular  
⇒ Infinite Fooling Set?
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We saw that infinite fooling set ⇒ non-regular. Converse? 
(Will this proof strategy always work, in principle?  

Or maybe for some non-regular languages the Defender 
has a winning strategy in dSuvxGame?) 

Myhill-Nerode theorem!

Converse does hold! 
(Defender has a winning strategy only if L is regular.) 

But not necessarily easy (or even possible) to compute the 
winning strategy from say, an English description.

Optional Reading
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Defender 
(claim: ∃ DFA for L)

Challenger 
(claim: no DFA for L)

Picks 

Picks w ∈ L, |w| ≥ d
x,y,z ∈ Σ* s.t.  

w=xyz, |xy| ≤ d, |y| ≥ 1
Picks i ∈ N

Challenger wins if 

FYI: Another Game

Theorem : If there is a DFA for L, then Defender has a winning 
strategy in PumpingGame(L). Hence if Challenger has a winning 
strategy, L not regular.   [ Converse doesn’t hold. ]

21

PumpingGame(L)

w

i

x,y,z

d


