Limitations of Finite Automata

Lecture 6

Today

Proving that certain languages need DFAs with a large number of states

Proving that certain ("easy") languages cannot be decided using DFAs at all!

Using Closure Properties of regular languages to reason about non-regularity

Need for Memory

e.g., Language $L = \{ 0^{33} \}$ (just one string, of 33 0's)

"Clearly" a DFA for *L* will need to keep count of the 0's seen, up to 33

35 states (count = $0, 1, \dots, 33$ and "crashed")

How do we rule out the possibility of a clever DFA with fewer states?

Need for Memory

Suppose *M* with d < 35 states s.t. $L(M) = L = \{ 0^{33} \}$

Consider $\delta^*(s,w)$ for $w \in \{0^i \mid i \in [0,34]\}$

Pigeonhole Principle \Rightarrow at least two values i < j s.t. $\delta^*(s,0^i) = \delta^*(s,0^j) = q$ (say) Let $u = 0^i$ and $v = 0^j$

Let $x = 0^k$ where k = 33 - i ($k \ge 0$ since $i < j \le 34$).

 $ux \in L \Rightarrow \delta^*(s, ux) \in F \text{ and } vx \notin L \Rightarrow \delta^*(s, vx) \notin F$

But $\delta^*(s, ux) = \delta^*(q, x) = \delta^*(s, vx)$!

Abstracting the proof

Consider $\delta^*(s,w)$ for $w \in \{ 0^i | i \in [0,34] \}$

By the pigeonhole principle, at least two values i < j s.t. $\delta^*(s,0^i) = \delta^*(s,0^j) = q$ (say)

Let
$$u = 0^i$$
 and $v = 0^j$

Let
$$x = 0^k$$
 where $k = 33 - i$
 $(k \ge 0 \text{ since } i < j \le 34).$

 $ux \in L \Rightarrow \delta^*(s, ux) \in F$ and $vx \notin L \Rightarrow \delta^*(s, vx) \notin F$

But
$$\delta^*(s, ux) = \delta^*(q, x) = \delta^*(s, vx)$$

Come up with a set *S*, |S| = ds.t. for *any two distinct* $u, v \in S$ $\exists x s.t$ $| \{ ux, vx \} \cap L | = 1$

Proves that any DFA for *L* must have at least *d* states

Strings Indistinguishable to a DFA

Let $M = (\Sigma, Q, \delta, s, F)$ be an arbitrary DFA

Suppose $\delta^{*}(s,u) = \delta^{*}(s,v) = q$

Then, for every *x*, $\delta^*(s,ux) = \delta^*(s,vx) = \delta^*(q,x)$

i.e., M "can't tell the difference" between having seen u and v

In particular, for every x, $ux \in L(M) \Leftrightarrow vx \in L(M)$ (*)

Theorem : If there is a DFA for *L* with < *d* states, then <u>Defender has a winning strategy</u> in SuvxGame(*L*,*d*) **Proof** : <u>Winning strategy</u>: Let L=L(M), $M = (\Sigma, Q, \delta, s, F)$, |Q| < d. Receive *S*. Since |S| > |Q|, by pigeonhole principle, $\exists u, v \in S$, s.t., $\delta^*(s,u)=\delta^*(s,v)$. Send (u,v). By (*), Challenger can't win the game.

374

Proving Lowerbound on DFA size

Theorem : If there is a DFA for L with < d states, then Defender has a winning strategy in SuvxGame(L,d)

 $\forall S \subseteq \Sigma^*, |S| \ge d, \exists u, v \in S, u \neq v, \forall x \in \Sigma^*, ux \in L \Leftrightarrow vx \in L$

 $\exists S \subseteq \Sigma^*, |S| \ge d, \ \forall u, v \in S, u \neq v, \ \exists x \in \Sigma^*, \ |\{ux, vx\} \cap L| = 1$

Corollary : If the <u>Challenger has a winning strategy</u> in the SuvxGame(L,d) (so that the Defender doesn't), then there is no DFA for L with < d states.

To prove that *L* has no DFA with < *d* states, enough to show a winning strategy for the Challenger in SuvxGame(*L*,*d*)

Fooling set of size d

Fooling Set S: $\forall u, v \in S, u \neq v, \exists x \in \Sigma^*, |\{ux, vx\} \cap L| = 1$

374

Example

 $L_k = \{ w \mid w \text{ ends in } 1(0+1)^{k-1} \}$

An NFA with *k*+1 states: $Q = \{0,1,...,k\}, s = 0, F = \{k\}$. $\delta(0,0) = \{0\}, \delta(0,1) = \{0,1\}, \delta(i,b) = \{i+1\}$ for $1 \le i < k$ and $b \in \{0,1\}$.

DFA? Intuitively, need to remember last k bits, as any of them could turn out to be at the k^{th} position from end. DFA with a state for each possible prefix: $(1+1+2+4+\ldots+2^{k-1}) = 2^k$ states.

Claim: Any DFA for L_k must have at least $d = 2^k$ states!

Winning strategy for challenger? $S = \{0,1\}^k$. For any *u*,*v*, let *x* be as follows.

There is some position where u, v disagree. Say i^{th} position from right $(1 \le i \le k)$. Let $x = 0^{k-i}$. Then ux, vx disagree at the k^{th} position from right. Hence, exactly one of them will be in L_k .

374

 \bigcirc

Non-Regular Languages

e.g., Language $L = \{ 0^n 1^n \mid n \ge 0 \}$

"Clearly" an automaton will need to count the number of 0's and match it against the number of 1's (if it is scanning the input bit by bit)

Cannot do that in a DFA

How do we prove it?

Show an infinite fooling set!

374

Proving no DFA

Theorem : If there is a DFA for L, then the Defender has a winning strategy in dSuvxGame(L)

 $\exists d \in \mathbb{Z}^+ \forall S \subseteq \Sigma^*, |S| \ge d, \exists u, v \in S, u \ne v, \forall x \in \Sigma^*, ux \in L \Leftrightarrow vx \in L$

 $\forall d \in \mathbb{Z}^+ \exists S \subseteq \Sigma^*, |S| \ge d, \ \forall u, v \in S, u \neq v, \ \exists x \in \Sigma^*, |\{ux, vx\} \cap L| = 1$

Corollary : If the Challenger has a winning strategy in the dSuvxGame(L) (so that the Defender doesn't), then there is no DFA for *L*.

To prove that L has no DFA, enough to show a winning strategy for the Challenger in dSuvxGame(L)

an infinite Fooling set

Fooling Set S: $\forall u, v \in S, u \neq v, \exists x \in \Sigma^*, |\{ux, vx\} \cap L| = 1$

374

- $L = \{ 0^n 1^n \mid n \ge 0 \}$
 - o Winning strategy for challenger?
 - o $S = \{0\}^*$. For any u, v, let $x = 1^{|u|}$ so that $ux \in L$, $vx \notin L$.
- $L = \{ w \mid w \text{ has equal number of 0s and 1s } \}$
 - o Same winning strategy as above
- $L = \{ 0^p | p \text{ is a prime number } \}$
 - Same fooling set as above! $S = \{0\}^*$
 - o Rest of the strategy?

CS 374

 $L = \{ 0^p | p \text{ is a prime number } \}$

• Fooling set $S = \{0\}^*$. Rest of the strategy?

Fun exercise! Hint: *primorial*

- o Given $u=0^i$, $v=0^j$, (say, i < j, w.l.o.g.) find a non-negative number k s.t. exactly one of i+k and j+k is prime. Then, let $x=0^k$.
- o <u>Solution 1</u>: **Fact**: We can find arbitrarily large gaps between successive prime numbers, for arbitrarily large prime numbers.

Let $\Delta = j-i$. Let p_1 and p_2 be successive primes s.t. $p_1 \ge i$ and $p_2-p_1 > \Delta$. Let $k = p_1-i$. Then $k+i = p_1$ is prime, $k+j = p_1 + \Delta < p_2$ is not.

o <u>Solution 2</u>: Let $\Delta = j - i$. Let $p \ge i$ be a prime, Note that $p+r\Delta$ is prime for r=0, and non-prime for r = p. Hence \exists some $r \in [0, p]$ s.t. $p+r\Delta$ is prime but $p + (r+1)\Delta$ is a non-prime. Set $k = p+r\Delta - i$.

Non-Regularity via Closure

Recall: Several operations on languages that preserve regularity

If L_1 , L_2 regular, so is L_1 op L_2

Gives a way to prove non-regularity!

Suppose we already knew that L_2 is regular, but L_1 **op** L_2 is not.

Then L_1 is not regular!

374

Let $L = \{ w \mid w \text{ has unequal number of 0s and 1s } \}$.

o We know that \overline{L} is not regular. Hence L can't be.

▶ Let
$$L = \{ 0^n 1^n | n \ge 0 \} \cup \{ w | w | s odd \}$$

o Let $L' = \{0^n 1^n \mid n \ge 0\}$ and $L'' = \{w \mid |w| \text{ is odd }\}.$ Then L' = L - L''. Now, L'' is regular. If L regular, L' will be too!

Let $L_1 = \{ 0^n 1^n \mid n \ge 0 \}$. Let $L = \{ w \mid w \in L_1 \text{ and } |w| \equiv 0 \pmod{3} \}$. Prove that L is not regular.

o Use $L = L_1 \cap L_2$ where $L_2 = \{ w \mid |w| \equiv 0 \pmod{3} \}$?

• No! $(L_1 \text{ not regular}, L_2 \text{ regular}) \Rightarrow (L_1 \cap L_2 \text{ not regular})!$

o e.g., L_2 is a finite set

Non-Regularity via Closure

Recall: Several operations on languages that preserve regularity

If L_1 , L_2 regular, so is L_1 op L_2

Gives a way to prove non-regularity!

Suppose we already knew that L_2 is regular, but L_1 **op** L_2 is not.

Then L_1 is not regular!

17

374

Let $L_1 = \{ 0^n 1^n \mid n \ge 0 \}$. Let $L = \{ w \mid w \in L_1 \text{ and } |w| \equiv 0 \pmod{3} \}$. Prove that L is not regular.

o Let $L' = \{0\}L\{1\}$. and $L'' = \{00\}L\{11\}$.

o If L is regular, so are L' and L''

```
o But L_1 = L \cup L' \cup L''
```

o Since L_1 not regular, L is not regular

o Or directly use the fooling set argument: e.g., $S = \{ 0^{3i} | i \ge 0 \}$

How to Pick a Fooling Set

Make sure you don't put in any two strings which can let the defender win!

In particular, <u>all</u> the strings you include (except maybe one) should be prefixes of strings in the language

e.g., for $L = \{ 0^n 1^n \mid n \ge 0 \}$ don't include 1 and 10 (say)

Intuitively, each prefix in the fooling set has a different value for a parameter that a machine will need to remember

Non-Regular → Infinite Fooling Set?

We saw that infinite fooling set \Rightarrow non-regular. Converse?

(Will this proof strategy always work, in principle? Or maybe for some non-regular languages the Defender has a winning strategy in dSuvxGame?)

Myhill-Nerode theorem

Optional Reading

Converse does hold! (Defender has a winning strategy only if L is regular.)

But not necessarily easy (or even possible) to compute the winning strategy from say, an English description.

FYI: Another Game

PumpingGame(L)

Theorem : If there is a DFA for L, then <u>Defender has a winning</u> <u>strategy</u> in PumpingGame(L). Hence if Challenger has a winning strategy, L not regular. [Converse doesn't hold.]