Contexb-Free Grrammars
(and Langquages)

Today ‘

Beyond regular expressions:
Context-Free Grammars (CFGs)

What is a CFG?
What is the language associated with a CFG?

Creating CFGs. Reasoning about CFGs.

CS 374

CS 374

Compiler Frontend

Rules encoded as
regular expressions

\/

for (i=0; i<n; i++) {

)

a++;

Lexical
Analyzer

Rules cannot be encoded as
regular expressions

\/

stmt
for| (| id E] //for-strQ -
number E| @ for expr E| expr expr stmt
< id [b JIN 1IN 7N
)| [{] id] fr+ B@J vallE[rvall [id K fid| fid f+ [{[stmt
— L /
id| number expr
/
@ -+

~Biological Models

en.wikipedia.org/wiki/L-system

CS 374

Biological Models

A A

Rule: | — Y

CS 374

Biological Models

SV

Rule: ! —>Yor |

Grammar: Rewriting rules for generating
a set of strings (i.e., a language) from a “seed”

Context-Free Grammar ‘

Example: a (simplistic) syntax for arithmetic expressions

expr — expr + expr
expr — expr x expr
expr — var

var = a

var = D

var = C

€.g. expr ="a+0bXxC a var var
[“dgrives”] O %] %]

(This grammar is "ambiguous” since there is another
parse tree for the same string)

CS 374

CS 374

Context-Free Grammar

Example: a (simplistic) syntax for arithmetic expressions

expr — expr + expr
expr — expr x expr
expr — var

var = a

var = D

var = C

e.g.expr="a+bxc

[“denves”]

expr — expr + expr | expr x expr | var
var > a|b|c

/\

[shoﬂ&handj
G=2.V.P.95)
> ={ab,c,+,x} (terminals

)
V={expr,var} (non-terminals)
P={(A,a)lA— a} (prod. rules)
S = expr (start symbol)

Context-Free Grammar : Arrows ®

Production Rule: A = &, A€V, & (XU V)*

expr — expr + expr | expr x expr | var
var > a|b|c

Immediately Derives: a1 = o if oy, o € (2 U V)*

st,ai=pAy,ao=pryandA = x

More clearly, it grammar is G, expr = expr + expr
" * /
we write a =¢” o expr + expr = expr + expr x expr

\/

Derives: a =" a' It 3ay,..., a1 € (XU V)* s.t.

ﬁj‘: °

- al=aq, /%+1:a’, and for all i € [1, 1], ai = a1

@ -

Ol t-step - - -
derivation eXpPr =" expr + expr x expr =" var +var xvar="a + b X C

/
a ='a expr =*a+bxc

CS 374

10

Context-Free Languages

The language generated by a grammar G
with start symbol S and alphabet 2,
LG ={weEZ*|S=2¢"w}

Languages generated by a context free grammars
are called Context Free Languages (CFL)

CS 374

11

Examples

Over 2=4{0,1 }, give a grammar for the following languages:

% L={01"In=0}
S — £]0S1

> L={wlw=wk
S—¢|0]1]0S0]1Sl1
» L={0"1"lm<n}

Z— ¢e|0Z1 //On1n
S—Z1|SIl //0mInwithm <n

> L={0m"|m#n)

S—A|B

Z— ¢e|0Z1 //Onn
A—0Z]|0A //OmInwithm > n
B—Z1|Bl //OmInwithm<n

Parse Tree

Parse Tree captures the
structure of derivations for a
given string
(but not the exact order)

expr="a+bxc

The exact order of

But structure is important!
@ [u

. o]]
Ambiguous grammar: It
some string has two ditferent @ @

parse trees

CS 374

expr =* expr + expr x expr =*var+var xvar="a+b xc
12 expr ="a+expr="a+exprxc="a+bxc

Ambiguity ‘

expr — expr + expr | expr x expr | var
var > a|b|c expr=*a+bxc

CS 374
@
©

13

CS 374

An Unambiguous Grammar

expr — term + expr | term
term — var | var x term

var > a|b|c

In practice, unambiguous
grammars are important
(e.g., in compilers)

Operator precedence enforced [_VA]

© @] ©

by requiring all x carried out (to
get a “term”) before any +

There are CFLs which do not
have any unambiguous
grammar:

iInherently ambiguous languages

expr="a+bxc

CS 374

15

Examples

2z L=L0%)

S—¢|0]|SS : Ambiguous!

S —¢e|0S :Unambiguous

2 L= setof all strings with balanced parentheses
S—¢e|(S)|SS : Ambiguous!

T—=0])
S— ¢e|TS - Unambiguous

CS 374

16

Examples

2 L= set of all valid regular expressions over {0, 1}

An ambiguous grammar (start symbol S, 2= {0,¢,0,1,+,*,(,)}):
S20|e|0]|1](S)|S*|SS|S+S

An unambiguous grammar for a subset of regular expressions:
S=20[e|0][1[(S)](S*)|(SS)](S+S)

Exercise: An unambiguous grammar
for all valid regular expressions

CS 374

17

Proving Correctness of Grammars

Claim: Let L={wl#w)=#(w) }. Then, L(G) =L where
the productions of G are: S = 0S1 | 150 | SS | €

Challenge: Give an
unambiguous grammar

Proof: Need to prove both L(G) € L and L(G) 2 L.

Prove L(G) C L by induction on the length of derivations
(or height of parse trees)

Prove L(G) 2 L by induction on the length of strings.

Proving Correctness of Grammars

Claim: Let L={wl#,(w)=4#,(w) }. Then, L(G) = L where
the productions of G are: S = 051 | 150 | SS | ¢

Proof: Proving L(G) C L by induction on the length of derivations.

etweE L(G). S ='w for some ¢ > 1. Induction on ¢ to show that w € L.

Base case: t=1. Only string derived ise. ¥

nduction step: Consider ¢> 1. Suppose all us.t. S =2 u, k<t in L.

etwbesuchthatS ='w.ie., S=a; =""w.
Case 0,=0S1: w=0ul and S=""u. By IH, #o(u)=#1(u).

Hence #o(w) = #o(u)+1 = #1(v)+1 = #1(w). (Case a;=150 is symmetric.)

CS 374

Case a;=SS: w=uvand S="u, S="v,1 =mn<t(m+n=1t1). By IH,
H#o(u)=#1(u) & #o(v)=#1(v). Hence #o(w) = #o(u)+#o(v) = #1(u)+#1(v) = #1(w)

18

CS 374

19

Proving Correctness of Grammars __

Claim: Let L={wl#,(w)=4#,(w) }. Then, L(G) =L where
the productions of G are: S = 051 | 150 | SS | ¢

Proof: Proving L(G) 2 L by induction on the length of strings.

Suppose w € L. To show by induction on |w| that w € L(G).
Base cases: |w|=0. e € L(G). ¥ No string with |w|=1in L(G). ¥

Induction step: Let n > 2. Suppose u € L(G) for all u € L with |u| < n.
Let w € L be such that |w|=n; i.e., #(w)=#1(w).

Case w=0ul: Thenu € L and |u| <n. By IH, u € L(G). i.e., S="u.

Hence, S = 051 =" Oul = w. (Case w=1u0 is symmetric.)

Case w=0u0: Let d; = #o(i-long prefix of w) — #4(i-long prefix of w).
Thend,=1,d,=0,d,,=-1.503d1<m=<n-1s.t.,d,=0.ie., w=xy, where
x|, |y| < [w|, and x,y € L. By IH, x,y € L(G). Hence S = SS =" xy = w.

(Case w=1ul is symmetric.)

CS 374

20

Often will need to strengthen the claim to include strings
generated by every variable in the grammar

Claim: Let L={wl#w)=#(w) }. Then, L(G) = L where

Proving Correctness of Grammars

poroductions of G are:
S— AB|BA]|¢

A—0
B — 1

AS | SA
BS | SB

Stronger Claim:

A derives all st
B derives all st
S derives all st

f

rl

r

NgsS w S.1. #o(w) = #1(w)+1.
Ngs w S.1. #1(w) = #o(w)+1.
NgsS w S.1. #o(w) = #1(w).

CS 374

21

Closure Properties for CFL

Union: If L; and [, are CFLs, sois L; U L.

Let G =(Z, V1, P1,91), G2 = (2, V2, P2, S2) with Vi N Vo = 0.
LetG=Z,V,P,S) with V=V, U V,U {S}, and
P=P,UP,U{S — S |Ss}. Then L(G) = L(G1) U L(Go).

Concatenation: If L; and L, are CFLs, sois Ly L».
Let Gy =(Z, Vi, P1,S1),Go= (2, Vo, P2, So) with ViN Vo = O,
LetG=Z,V,P,S) with V=V, U V,U {S}, and
P=P,UP,U{S — S1S2}. Then L(G) = L(G1) L(G»).

Kleene Star: If L; isa CFL, sois L;*.
Let G1 =(Z, Vi, P1, S)).
LetG=C, V,P,S)with V=V, U{S}, and
P=P;U{S = | SSi1}. Then L(G)=L(G))*.

Closure Properties for CFL

CFLs are not closed under intersection or complement

Intersection: Ly = { 0i1J0k | i=j } & Ly = { 0170k | j=k } are CFLs.
But it turns out that L1 N L, = { 011J0% | i=j=k } is not a CFL!

Complement: If CFLs were to be closed under
complementation, since they are already closed under
union, they would have been closed under intersection!

CS 374

22

CS 374

23

Grammars

Rewriting rules for generating strings from a “seed”

In an “unrestricted” grammar, the rules are of the form
a— pwherea, €U V)*

Context-Free Grammar: Rewriting rules apply to
individual variables (with no “context”)

.””’,,,4>All languages

Languages with algorithms/
unrestricted grammars

Context Free Languages

Regular Languages

