Context-Free Grammars (and Languages)

Lecture 7

Beyond regular expressions: Context-Free Grammars (CFGs)

What is a CFG? What is the language associated with a CFG?

Creating CFGs. Reasoning about CFGs.

Compiler Frontend Rules encoded as Rules *cannot be* encoded as regular expressions regular expressions for (i=0; i<n; i++) { Lexical a++; Parser Analyzer stmt for-stmt for (id = number ; id for (expr ; expr ; expr) stmt ; id ++ id lval = rval id < id id ++ { stmt } id ++ id number expr;

id ++

374

Biological Models

en.wikipedia.org/wiki/L-system

4

CS 374

Rule: $\uparrow \rightarrow \uparrow \circ r$

Grammar: <u>*Rewriting rules*</u> for generating a set of strings (i.e., a language) from a "seed"

374

Context-Free Grammar

Example: a (simplistic) syntax for arithmetic expressions

- $expr \rightarrow expr + expr$
- $expr \rightarrow expr \times expr$
- $expr \rightarrow var$
- $var \rightarrow a$
- $var \rightarrow b$
- $var \rightarrow c$

CS 374

(This grammar is "ambiguous" since there is another parse tree for the same string)

Context-Free Grammar

Example: a (simplistic) syntax for arithmetic expressions

- $expr \rightarrow expr + expr$
- $expr \rightarrow expr \times expr$
- $expr \rightarrow var$
- $var \rightarrow a$
- $var \rightarrow b$
- $var \rightarrow c$

e.g.
$$expr \Rightarrow *a + b \times c$$

"derives"

 $expr \rightarrow expr + expr | expr \times expr | var$ $var \rightarrow a | b | c$ short-hand

$$G = (\Sigma, V, P, S)$$

$$\Sigma = \{a, b, c, +, \times\}$$
 (terminals)

$$V = \{expr, var\}$$
 (non-terminals)

$$P = \{(A, \alpha) \mid A \rightarrow \alpha\}$$
 (prod. rules)

$$S = expr$$
 (start symbol)

374

Context-Free Grammar : Arrows

Production Rule: $A \rightarrow \pi$, $A \in V$, $\pi \in (\Sigma \cup V)^*$

expr \rightarrow expr + expr | expr \times expr | var var \rightarrow a | b | c

Immediately Derives: $\alpha_1 \Rightarrow \alpha_2$ if $\alpha_1, \alpha_2 \in (\Sigma \cup V)^*$

s.t.,
$$\alpha_1 = \beta A \gamma$$
, $\alpha_2 = \beta \pi \gamma$ and $A \rightarrow \pi$

More clearly, if grammar is G, we write $\alpha \Rightarrow_G^* \alpha'$

expr \Rightarrow expr + expr expr + expr \Rightarrow expr + expr \times expr

Derives: $\alpha \Rightarrow^* \alpha'$ if $\exists \alpha_1, \ldots, \alpha_{t+1} \in (\Sigma \cup V)^*$ s.t.

 $\alpha_{1}=\alpha, \ \alpha_{t+1}=\alpha', \text{ and for all } i \in [1, t], \ \alpha_{i} \Rightarrow \alpha_{i+1}$ $t\text{-step}_{derivation}_{\alpha \Rightarrow^{t} \alpha'} \qquad expr \Rightarrow^{*} expr + expr \times expr \Rightarrow^{*} var + var \times var \Rightarrow^{*} a + b \times c$ $expr \Rightarrow^{*} a + b \times c$

Context-Free Languages

The language *generated* by a grammar *G* with start symbol S and alphabet Σ , $L(G) = \{ w \in \Sigma^* \mid S \Rightarrow_G^* w \}$

Languages generated by a context free grammars are called **Context Free Languages** (CFL)

Examples

Over $\Sigma = \{ 0, 1 \}$, give a grammar for the following languages:

- $S \rightarrow \varepsilon \mid 0S1$
- $L = \{ w \mid w = w^{R} \}$
- $S \rightarrow \varepsilon \mid 0 \mid 1 \mid 0S0 \mid 1S1$
- $L = \{ 0^m 1^n | m < n \}$

 $\begin{array}{ll} \mathsf{Z} \rightarrow \varepsilon \mid \mathsf{0}\mathsf{Z}1 & // \, \mathsf{0}^{\mathsf{n}}\mathsf{1}^{\mathsf{n}} \\ \mathsf{S} \rightarrow \mathsf{Z}1 \mid \mathsf{S}1 & // \, \mathsf{0}^{\mathsf{m}}\mathsf{1}^{\mathsf{n}} \text{ with } \mathsf{m} < \mathsf{n} \end{array}$

- $L = \{ 0^m 1^n \mid m \neq n \}$
- $S \rightarrow A \mid B$
- $Z \rightarrow \varepsilon \mid 0Z1 \quad // 0^{n}1^{n}$
- $A \rightarrow 0Z \mid 0A \mid // 0^{m}1^{n}$ with m > n
- $B \rightarrow Z1 \mid B1 \mid // 0^m 1^n$ with m < n

374

 \bigcirc

Parse Tree

Parse Tree captures the structure of derivations for a given string (but not the exact order)

The exact order of derivations is *not* important

But structure is important!

Ambiguous grammar: If some string has two different parse trees $expr \Rightarrow a + b \times c$

expr $\Rightarrow^* expr + expr \times expr \Rightarrow^* var + var \times var \Rightarrow^* a + b \times c$ expr $\Rightarrow^* a + expr \Rightarrow^* a + expr \times c \Rightarrow^* a + b \times c$

Ambiguity

 $expr \rightarrow expr + expr | expr \times expr | var$ $var \rightarrow a | b | c$

$$expr \Rightarrow a + b \times c$$

CS 374

An Unambiguous Grammar

expr \rightarrow term + expr | term term \rightarrow var | var \times term var \rightarrow a | b | c

> In practice, unambiguous grammars are important (e.g., in compilers)

Operator precedence enforced by requiring all × carried out (to get a "term") before any +

There are CFLs which do not have *any* unambiguous grammar: inherently ambiguous languages $expr \Rightarrow a + b \times c$

374

Examples

- $L = L(0^*)$
- $S \rightarrow \varepsilon \mid 0 \mid SS$: Ambiguous!
- $S \rightarrow \varepsilon \mid 0S$: Unambiguous
- \blacktriangleright L = set of all strings with balanced parentheses
- $S \rightarrow \varepsilon \mid (S) \mid SS$: Ambiguous!
- $\begin{array}{l} \mathsf{T} \rightarrow () \mid (\mathsf{S}) \\ \mathsf{S} \rightarrow \varepsilon \mid \mathsf{TS} \end{array} : Unambiguous \end{array}$

Examples

 \blacktriangleright L = set of all valid regular expressions over {0, 1}

An ambiguous grammar (start symbol S, $\Sigma = \{\emptyset, e, 0, 1, +, *, (,)\}$): S $\rightarrow \emptyset \mid e \mid 0 \mid 1 \mid (S) \mid S^* \mid SS \mid S+S$

An unambiguous grammar for a *subset* of regular expressions: $S \rightarrow \emptyset \mid e \mid 0 \mid 1 \mid (S) \mid (S^*) \mid (SS) \mid (S+S)$

Exercise: An unambiguous grammar for *all* valid regular expressions

Claim: Let $L = \{ w \mid \#_0(w) = \#_1(w) \}$. Then, L(G) = L where the productions of *G* are: $S \rightarrow 0S1 \mid 1S0 \mid SS \mid \varepsilon$

Challenge: Give an unambiguous grammar

Proof: Need to prove both $L(G) \subseteq L$ and $L(G) \supseteq L$.

Prove $L(G) \subseteq L$ by induction on the length of derivations (or height of parse trees)

Prove $L(G) \supseteq L$ by induction on the length of strings.

Claim: Let $L = \{ w \mid \#_0(w) = \#_1(w) \}$. Then, L(G) = L where the productions of *G* are: $S \rightarrow 0S1 \mid 1S0 \mid SS \mid \varepsilon$

374

18

Proof: Proving $L(G) \subseteq L$ by induction on the length of derivations.

Let $w \in L(G)$. S $\Rightarrow^t w$ for some $t \ge 1$. Induction on t to show that $w \in L$. Base case: t=1. Only string derived is ε .

Induction step: Consider t > 1. Suppose all u s.t. $S \Rightarrow^{k} u$, k < t, in L. Let w be such that $S \Rightarrow^{t} w$. i.e., $S \Rightarrow \alpha_{1} \Rightarrow^{t-1} w$. $\underline{Case \ \alpha_{1}=0S1}$: w = 0u1 and $S \Rightarrow^{t-1} u$. By IH, $\#_{0}(u)=\#_{1}(u)$. Hence $\#_{0}(w) = \#_{0}(u)+1 = \#_{1}(v)+1 = \#_{1}(w)$. ($\underline{Case \ \alpha_{1}=1S0}$ is symmetric.) $\underline{Case \ \alpha_{1}=SS}$: w = uv and $S \Rightarrow^{m} u$, $S \Rightarrow^{n} v$, $1 \le m, n < t \ (m+n = t-1)$. By IH, $\#_{0}(u)=\#_{1}(u) \& \#_{0}(v)=\#_{1}(v)$. Hence $\#_{0}(w) = \#_{0}(u)+\#_{0}(v) = \#_{1}(u)+\#_{1}(v) = \#_{1}(w)$

Claim: Let $L = \{ w \mid \#_0(w) = \#_1(w) \}$. Then, L(G) = L where the productions of *G* are: $S \rightarrow 0S1 \mid 1S0 \mid SS \mid \varepsilon$

Proof: Proving $L(G) \supseteq L$ by induction on the length of strings.

Suppose $w \in L$. To show by induction on |w| that $w \in L(G)$. Base cases: |w|=0. $\varepsilon \in L(G)$. \checkmark No string with |w|=1 in L(G). \checkmark

Induction step: Let $n \ge 2$. Suppose $u \in L(G)$ for all $u \in L$ with |u| < n. Let $w \in L$ be such that |w|=n; i.e., $\#_0(w)=\#_1(w)$.

<u>Case w=0u1</u>: Then $u \in L$ and |u| < n. By IH, $u \in L(G)$. i.e., $S \Rightarrow^* u$.

Hence, $S \Rightarrow 0S1 \Rightarrow^* 0u1 = w.$ (Case w=1u0 is symmetric.)

<u>Case w=0u0</u>: Let $d_i = \#_0(i$ -long prefix of $w) - \#_1(i$ -long prefix of w). Then $d_1 = 1$, $d_n = 0$, $d_{n-1} = -1$. So $\exists 1 < m \le n-1$ s.t., $d_m = 0$. i.e., w=xy, where |x|, |y| < |w|, and $x, y \in L$. By IH, $x, y \in L(G)$. Hence $S \Rightarrow SS \Rightarrow^* xy = w$.

(<u>Case w=1u1</u> is symmetric.)

Often will need to strengthen the claim to include strings generated by every variable in the grammar

Claim: Let $L = \{ w | \#_0(w) = \#_1(w) \}$. Then, L(G) = L where productions of *G* are:

 $S \rightarrow AB | BA | \varepsilon$ $A \rightarrow 0 | AS | SA$ $B \rightarrow 1 | BS | SB$

Stronger Claim:

A derives all strings w s.t. $\#_0(w) = \#_1(w)+1$. B derives all strings w s.t. $\#_1(w) = \#_0(w)+1$. S derives all strings w s.t. $\#_0(w) = \#_1(w)$.

374

N

Closure Properties for CFL

Union: If L_1 and L_2 are CFLs, so is $L_1 \cup L_2$. Let $G_1 = (\Sigma, V_1, P_1, S_1), G_2 = (\Sigma, V_2, P_2, S_2)$ with $V_1 \cap V_2 = \emptyset$. Let $G = (\Sigma, V, P, S)$ with $V = V_1 \cup V_2 \cup \{S\}$, and $P = P_1 \cup P_2 \cup \{S \rightarrow S_1 \mid S_2\}$. Then $L(G) = L(G_1) \cup L(G_2)$.

Concatenation: If L_1 and L_2 are CFLs, so is $L_1 L_2$. Let $G_1 = (\Sigma, V_1, P_1, S_1), G_2 = (\Sigma, V_2, P_2, S_2)$ with $V_1 \cap V_2 = \emptyset$. Let $G = (\Sigma, V, P, S)$ with $V = V_1 \cup V_2 \cup \{S\}$, and $P = P_1 \cup P_2 \cup \{S \rightarrow S_1 S_2\}$. Then $L(G) = L(G_1) L(G_2)$.

> **Kleene Star:** If L_1 is a CFL, so is L_1^* . Let $G_1 = (\Sigma, V_1, P_1, S_1)$. Let $G = (\Sigma, V, P, S)$ with $V = V_1 \cup \{S\}$, and $P = P_1 \cup \{S \rightarrow \varepsilon \mid S \mid S_1\}$. Then $L(G) = L(G_1)^*$.

21

374

Closure Properties for CFL

CFLs are **not** closed under intersection or complement

Intersection: $L_1 = \{ 0^i 1^{j0^k} | i=j \} \& L_1 = \{ 0^i 1^{j0^k} | j=k \}$ are CFLs. But it turns out that $L_1 \cap L_2 = \{ 0^i 1^{j0^k} | i=j=k \}$ is not a CFL!

<u>Complement</u>: If CFLs were to be closed under complementation, since they are already closed under union, they would have been closed under intersection!

Grammars

Rewriting rules for generating strings from a "seed"

In an "unrestricted" grammar, the rules are of the form $\alpha \to \beta$ where $\alpha, \beta \in (\Sigma \cup V)^*$

Context-Free Grammar: Rewriting rules apply to individual variables (with no "context")

374