Contexb-Free Grrammars
(and Langquages)



Today ‘

Beyond regular expressions:
Context-Free Grammars (CFGs)

What is a CFG?
What is the language associated with a CFG?

Creating CFGs. Reasoning about CFGs.
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Compiler Frontend

Rules encoded as
regular expressions

\/

for (i=0; i<n; i++) {

)

a++;

Lexical
Analyzer

Rules cannot be encoded as
regular expressions

\/

stmt
for| (| id E ] //for-strQ -
number E| @ for expr E| expr expr stmt
< id [ b JIN 1IN 7N
)| [{] id] fr+ B@J vallE[rvall [id K fid| fid f+ [{[stmt
— L /
id| number expr
/
@ -+




~Biological Models

en.wikipedia.org/wiki/L-system
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Biological Models

A A

Rule: | — Y
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Biological Models

SV

Rule: ! —>Yor |

Grammar: Rewriting rules for generating
a set of strings (i.e., a language) from a “seed”




Context-Free Grammar ‘

Example: a (simplistic) syntax for arithmetic expressions

expr — expr + expr
expr — expr x expr
expr — var

var = a

var = D

var = C

€.g. expr ="a+0bXxC a var var
[ “dgrives” ] O %] %]

(This grammar is "ambiguous” since there is another
parse tree for the same string)
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Context-Free Grammar

Example: a (simplistic) syntax for arithmetic expressions

expr — expr + expr
expr — expr x expr
expr — var

var = a

var = D

var = C

e.g.expr="a+bxc

[“denves”]

expr — expr + expr | expr x expr | var
var > a|b|c

/\

[shoﬂ&handj
G=2.V.P.95)
> ={ab,c,+,x} (terminals

)
V={expr,var} (non-terminals)
P={(A,a)lA— a} (prod. rules)
S = expr (start symbol)




Context-Free Grammar : Arrows ®

Production Rule: A = &, A€V, & (XU V)*

expr — expr + expr | expr x expr | var
var > a|b|c

Immediately Derives: a1 = o if oy, o € (2 U V)*

st,ai=pAy,ao=pryandA = x

More clearly, it grammar is G, expr = expr + expr
" * /
we write a =¢” o expr + expr = expr + expr x expr

\/

Derives: a =" a' It 3ay,..., a1 € (XU V)* s.t.

ﬁj‘: °

- al=aq, /%+1:a’, and for all i € [1, 1], ai = a1

@ -

Ol t-step - - -
derivation eXpPr =" expr + expr x expr =" var +var xvar="a + b X C

/
a ='a expr =*a+bxc
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Context-Free Languages

The language generated by a grammar G
with start symbol S and alphabet 2,
LG ={weEZ*|S=2¢"w}

Languages generated by a context free grammars
are called Context Free Languages (CFL)
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Examples

Over 2=4{0,1 }, give a grammar for the following languages:

% L={01"In=0}
S — £]0S1

> L={wlw=wk
S—¢|0]1]0S0]1Sl1
» L={0"1"lm<n}

Z— ¢e|0Z1 //On1n
S—Z1|SIl //0mInwithm <n

> L={0m"|m#n)

S—A|B

Z— ¢e|0Z1 //Onn
A—0Z]|0A //OmInwithm > n
B—Z1|Bl //OmInwithm<n




Parse Tree

Parse Tree captures the
structure of derivations for a
given string
(but not the exact order)

expr="a+bxc

The exact order of

But structure is important!
@ [u

. o] ]
Ambiguous grammar: It
some string has two ditferent @ @

parse trees

CS 374

expr =* expr + expr x expr =*var+var xvar="a+b xc
12 expr ="a+expr="a+exprxc="a+bxc




Ambiguity ‘

expr — expr + expr | expr x expr | var
var > a|b|c expr=*a+bxc
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An Unambiguous Grammar

expr — term + expr | term
term — var | var x term

var > a|b|c

In practice, unambiguous
grammars are important
(e.g., in compilers)

Operator precedence enforced [_VA]

© @] ©

by requiring all x carried out (to
get a “term”) before any +

There are CFLs which do not
have any unambiguous
grammar:

iInherently ambiguous languages

expr="a+bxc
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Examples

2z L=L0%)

S—¢|0]|SS : Ambiguous!

S —¢e|0S :Unambiguous

2 L= setof all strings with balanced parentheses
S—¢e|(S)|SS : Ambiguous!

T—=0])
S— ¢e|TS - Unambiguous
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Examples

2 L= set of all valid regular expressions over {0, 1}

An ambiguous grammar (start symbol S, 2= {0,¢,0,1,+,*,(,)} ):
S20|e|0]|1](S)|S*|SS|S+S

An unambiguous grammar for a subset of regular expressions:
S=20[e|0][1[(S)](S*)|(SS)](S+S)

Exercise: An unambiguous grammar
for all valid regular expressions
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Proving Correctness of Grammars

Claim: Let L={wl#w)=#(w) }. Then, L(G) =L where
the productions of G are: S = 0S1 | 150 | SS | €

Challenge: Give an
unambiguous grammar

Proof: Need to prove both L(G) € L and L(G) 2 L.

Prove L(G) C L by induction on the length of derivations
(or height of parse trees)

Prove L(G) 2 L by induction on the length of strings.



Proving Correctness of Grammars

Claim: Let L={wl#,(w)=4#,(w) }. Then, L(G) = L where
the productions of G are: S = 051 | 150 | SS | ¢

Proof: Proving L(G) C L by induction on the length of derivations.

etweE L(G). S ='w for some ¢ > 1. Induction on ¢ to show that w € L.

Base case: t=1. Only string derived ise. ¥

nduction step: Consider ¢> 1. Suppose all us.t. S =2 u, k<t in L.

etwbesuchthatS ='w.ie., S=a; =""w.
Case 0,=0S1: w=0ul and S=""u. By IH, #o(u)=#1(u).

Hence #o(w) = #o(u)+1 = #1(v)+1 = #1(w). (Case a;=150 is symmetric.)
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Case a;=SS: w=uvand S="u, S="v,1 =mn<t(m+n=1t1). By IH,
H#o(u)=#1(u) & #o(v)=#1(v). Hence #o(w) = #o(u)+#o(v) = #1(u)+#1(v) = #1(w)
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Proving Correctness of Grammars __

Claim: Let L={wl#,(w)=4#,(w) }. Then, L(G) =L where
the productions of G are: S = 051 | 150 | SS | ¢

Proof: Proving L(G) 2 L by induction on the length of strings.

Suppose w € L. To show by induction on |w| that w € L(G).
Base cases: |w|=0. e € L(G). ¥ No string with |w|=1in L(G). ¥

Induction step: Let n > 2. Suppose u € L(G) for all u € L with |u| < n.
Let w € L be such that |w|=n; i.e., #(w)=#1(w).

Case w=0ul: Thenu € L and |u| <n. By IH, u € L(G). i.e., S="u.

Hence, S = 051 =" Oul = w. (Case w=1u0 is symmetric.)

Case w=0u0: Let d; = #o(i-long prefix of w) — #4(i-long prefix of w).
Thend,=1,d,=0,d,,=-1.503d1<m=<n-1s.t.,d,=0.ie., w=xy, where
x|, |y| < [w|, and x,y € L. By IH, x,y € L(G). Hence S = SS =" xy = w.

(Case w=1ul is symmetric.)
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Often will need to strengthen the claim to include strings
generated by every variable in the grammar

Claim: Let L={wl#w)=#(w) }. Then, L(G) = L where

Proving Correctness of Grammars

poroductions of G are:
S— AB|BA]|¢

A—0
B — 1

AS | SA
BS | SB

Stronger Claim:

A derives all st
B derives all st
S derives all st

f

rl

r

NgsS w S.1. #o(w) = #1(w)+1.
Ngs w S.1. #1(w) = #o(w)+1.
NgsS w S.1. #o(w) = #1(w).
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Closure Properties for CFL

Union: If L; and [, are CFLs, sois L; U L.

Let G =(Z, V1, P1,91), G2 = (2, V2, P2, S2) with Vi N Vo = 0.
LetG=Z,V,P,S) with V=V, U V,U {S}, and
P=P,UP,U{S — S |Ss}. Then L(G) = L(G1) U L(Go).

Concatenation: If L; and L, are CFLs, sois Ly L».
Let Gy =(Z, Vi, P1,S1),Go= (2, Vo, P2, So) with ViN Vo = O,
LetG=Z,V,P,S) with V=V, U V,U {S}, and
P=P,UP,U{S — S1S2}. Then L(G) = L(G1) L(G»).

Kleene Star: If L; isa CFL, sois L;*.
Let G1 =(Z, Vi, P1, S)).
LetG=C, V,P,S)with V=V, U{S}, and
P=P;U{S = | SSi1}. Then L(G)=L(G))*.




Closure Properties for CFL

CFLs are not closed under intersection or complement

Intersection: Ly = { 0i1J0k | i=j } & Ly = { 0170k | j=k } are CFLs.
But it turns out that L1 N L, = { 011J0% | i=j=k } is not a CFL!

Complement: If CFLs were to be closed under
complementation, since they are already closed under
union, they would have been closed under intersection!
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Grammars

Rewriting rules for generating strings from a “seed”

In an “unrestricted” grammar, the rules are of the form
a— pwherea, €U V)*

Context-Free Grammar: Rewriting rules apply to
individual variables (with no “context”)

.””’,,,4>All languages

Languages with algorithms/
unrestricted grammars

Context Free Languages

Regular Languages




