Context-Free Grammars
(and Languages)

Lecture 7

Today

Beyond regular expressions: Context-Free Grammars (CFGs)

What is a CFG?
What is the language associated with a CFG?
Creating CFGs. Reasoning about CFGs.

Compiler Frontend

Rules encoded as regular expressions

Rules cannot be encoded as regular expressions

Biological Models

en.wikipedia.org/wiki/L-system

Biological Models

Biological Models

Rule: $\varphi \rightarrow{ }^{\boldsymbol{Y}}$ or

Grammar: Rewriting rules for generating a set of strings (i.e., a language) from a "seed"

Context-Free Grammar

Example: a (simplistic) syntax for arithmetic expressions expr \rightarrow expr + expr expr \rightarrow expr \times expr
expr \rightarrow var
var \rightarrow a
var $\rightarrow b$
var \rightarrow c

$$
\begin{gathered}
\text { e.g. expr } \underset{\sim \text { "derives" }}{\Rightarrow} \Rightarrow^{*} a+b \times c \\
\hline
\end{gathered}
$$

(This grammar is "ambiguous" since there is another parse tree for the same string)

Context-Free Grammar

Example: a (simplistic) syntax for arithmetic expressions

```
expr }->\mathrm{ expr + expr
expr }->\mathrm{ expr × expr
expr }->\mathrm{ var
var }->\mathrm{ a
var }->\textrm{b
var }->\mathrm{ c
```

e.g. expr $\Rightarrow^{*} a+b \times c$
"derives"

```
expr -> expr + expr | expr x expr | var
var }->\textrm{a}|\textrm{b}|\textrm{c
```


short-hand

$\underline{G=(\Sigma, V, P, S)}$
$\Sigma=\{a, b, c,+, \times\} \quad$ (terminals)
$V=\{$ expr, var $\} \quad$ (non-terminals)
$P=\{(\mathrm{A}, \alpha) \mid \mathrm{A} \rightarrow \alpha\} \quad$ (prod. rules)
$S=\operatorname{expr} \quad$ (start symbol)

Context-Free Grammar : Arrows

Production Rule: $A \rightarrow \pi, A \in V, \pi \in(\Sigma \cup V)^{*}$

$$
\begin{aligned}
& \text { expr } \rightarrow \text { expr }+ \text { expr } \mid \text { expr } \times \text { expr } \mid \text { var } \\
& \text { var } \rightarrow a|b| c
\end{aligned}
$$

Immediately Derives: $\alpha_{1} \Rightarrow \alpha_{2}$ if $\alpha_{1}, \alpha_{2} \in(\Sigma \cup V)^{*}$
s.t., $\alpha_{1}=\beta A \gamma, \alpha_{2}=\beta \pi \gamma$ and $\boldsymbol{A} \rightarrow \pi$

More clearly, if grammar is G, we write $\alpha \Rightarrow{ }_{G}{ }^{*} \alpha^{\prime}$

```
expr => expr + expr
expr + expr }=>\mathrm{ expr + expr }\times\mathrm{ expr
```

Derives: $\alpha \Rightarrow^{*} \alpha^{\prime}$ if $\exists \alpha_{1}, \ldots, \alpha_{t+1} \in(\Sigma \cup V)^{*}$ s.t. $\alpha_{1}=\alpha, \alpha_{t+1}=\alpha^{\prime}$, and for all $i \in[1, t], \alpha_{i} \Rightarrow \alpha_{i+1}$
t-step
derivation $\alpha \Rightarrow^{t} \alpha^{\prime}$

$$
\begin{aligned}
& \text { expr } \Rightarrow^{*} \text { expr }+ \text { expr } \times \text { expr } \Rightarrow^{*} \text { var }+\operatorname{var} \times \operatorname{var} \Rightarrow^{*} a+b \times c \\
& \text { expr } \Rightarrow^{*} a+b \times c
\end{aligned}
$$

Context-Free Languages

The language generated by a grammar G with start symbol S and alphabet Σ,

$$
L(G)=\left\{w \in \Sigma^{*} \mid S \Rightarrow \sigma_{G}^{*} w\right\}
$$

Languages generated by a context free grammars are called Context Free Languages (CFL)

Examples

Over $\Sigma=\{0,1\}$, give a grammar for the following languages:
() $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
$\mathrm{S} \rightarrow \varepsilon \mid 0 \mathrm{~S} 1$
() $L=\left\{w \mid w=w^{\mathrm{R}}\right\}$
$S \rightarrow \varepsilon|0| 1|0 S 0| 1 S 1$
$Z \rightarrow \varepsilon \mid 0 Z 1 \quad / / 0^{n 1 n}$
$S \rightarrow Z 1 \mid S 1 / / 0^{m 1 n}$ with $m<n$

$$
L=\left\{0^{m} 1^{n} \mid m<n\right\}
$$

b $L=\left\{0^{m} 1^{n} \mid m \neq n\right\}$
$S \rightarrow A \mid B$
$Z \rightarrow \varepsilon \mid 0 Z 1 \quad / / 0^{n} 1^{n}$
$A \rightarrow 0 Z \mid 0 A \quad / / 0^{m 1 n}$ with $m>n$
$B \rightarrow Z 1 \mid B 1 / / 0^{m 1 n}$ with $m<n$

Parse Tree

Parse Tree captures the structure of derivations for a given string
(but not the exact order)
The exact order of
derivations is not important
The exact order of
derivations is not important
But structure is important!
Ambiguous grammar: If some string has two different

$$
\text { expr } \Rightarrow^{*} a+b \times c
$$

parse trees

$$
\begin{aligned}
& \text { expr } \Rightarrow^{*} \operatorname{expr}+\operatorname{expr} \times \operatorname{expr} \Rightarrow^{*} \text { var }+\mathrm{var} \times \mathrm{var} \Rightarrow^{*} \mathrm{a}+\mathrm{b} \times \mathrm{c} \\
& \operatorname{expr} \Rightarrow^{*} a+\operatorname{expr} \Rightarrow{ }^{*} a+\operatorname{expr} \times c \Rightarrow^{*} a+b \times c
\end{aligned}
$$

Ambiguity

$$
\begin{aligned}
& \text { expr } \rightarrow \text { expr }+ \text { expr | expr } \times \text { expr | var } \\
& \text { var } \rightarrow \text { a | b | c }
\end{aligned}
$$

$$
\operatorname{expr} \Rightarrow^{*} a+b \times c
$$

An Unambiguous Grammar

```
expr }->\mathrm{ term + expr | term
term }->\mathrm{ var | var }\times\mathrm{ term
var }->\textrm{a}|\textrm{b}|\textrm{c
```

In practice, unambiguous grammars are important (e.g., in compilers)

Operator precedence enforced by requiring all \times carried out (to get a "term") before any +

There are CFLs which do not have any unambiguous

inherently ambiguous languages

Examples

B $L=L\left(0^{*}\right)$
$S \rightarrow \varepsilon|0| S S:$ Ambiguous!
$S \rightarrow \varepsilon \mid 0 S \quad$: Unambiguous
b $L=$ set of all strings with balanced parentheses
$S \rightarrow \varepsilon|(S)| S S:$ Ambiguous!
$\mathrm{T} \rightarrow(\mathrm{I} \mid \mathrm{S})$
$S \rightarrow \varepsilon \mid T S \quad:$ Unambiguous

Examples

($L=$ set of all valid regular expressions over $\{0,1\}$
An ambiguous grammar (start symbol S, $\Sigma=\left\{\emptyset, e, 0,1,+,{ }^{*},(),\right\}$): $S \rightarrow \varnothing|e| 0|1|(S)\left|S^{*}\right| S S \mid S+S$

An unambiguous grammar for a subset of regular expressions: $S \rightarrow \varnothing|e| 0|1|(S)\left|\left(S^{*}\right)\right|(S S) \mid(S+S)$

Exercise: An unambiguous grammar for all valid regular expressions

Proving Correctness of Grammars

Claim: Let $L=\left\{w \mid \#_{0}(w)=\#_{1}(w)\right\}$. Then, $L(G)=L$ where the productions of G are: $\mathrm{S} \rightarrow 0 \mathrm{~S} 1|1 \mathrm{~S} 0| \mathrm{SS} \mid \varepsilon$

Challenge: Give an
unambiguous grammar
Proof: Need to prove both $L(G) \subseteq L$ and $L(G) \supseteq L$.
Prove $L(G) \subseteq L$ by induction on the length of derivations (or height of parse trees)

Prove $L(G) \supseteq L$ by induction on the length of strings.

Proving Correctness of Grammars

Claim: Let $L=\left\{w \mid \#_{0}(w)=\#_{1}(w)\right\}$. Then, $L(G)=L$ where the productions of G are: $S \rightarrow 0 S 1|1 \mathrm{~S} 0| \mathrm{SS} \mid \varepsilon$

Proof: Proving $L(G) \subseteq L$ by induction on the length of derivations.
Let $w \in L(G) . S \Rightarrow^{t} w$ for some $t \geq 1$. Induction on t to show that $w \in L$.
Base case: $t=1$. Only string derived is $\varepsilon . \checkmark$
Induction step: Consider $t>1$. Suppose all u s.t. $\mathrm{S} \Rightarrow^{k} u, k<t$, in L.
Let w be such that $\mathrm{S} \Rightarrow{ }^{t} w$. i.e., $\mathrm{S} \Rightarrow \alpha_{1} \Rightarrow^{t-1} w$.
Case $\alpha_{1}=0 \mathrm{~S} 1: ~ w=0 u 1$ and $\mathrm{S} \Rightarrow{ }^{t-1} u$. By IH, $\#_{0}(u)=\#_{1}(u)$.
Hence $\#_{0}(w)=\#_{0}(u)+1=\#_{1}(v)+1=\#_{1}(w) .\left(\right.$ Case $\alpha_{1}=1 \mathrm{SO}$ is symmetric.)
Case $\alpha_{1}=$ SS: $w=u v$ and $\mathrm{S} \Rightarrow^{m} u, \mathrm{~S} \Rightarrow^{n} v, 1 \leq m, n<t(m+n=t-1)$. By IH,
$\#_{0}(u)=\#_{1}(u) \& \#_{0}(v)=\#_{1}(v)$. Hence $\#_{0}(w)=\#_{0}(u)+\#_{0}(v)=\#_{1}(u)+\#_{1}(v)=\#_{1}(w)$

Proving Correctness of Grammars

Claim: Let $L=\left\{w \mid \#_{0}(w)=\#_{1}(w)\right\}$. Then, $L(G)=L$ where the productions of G are: $S \rightarrow 0 S 1|1 \mathrm{~S} 0| \mathrm{SS} \mid \varepsilon$
Proof: Proving $L(G) \supseteq L$ by induction on the length of strings.
Suppose $w \in L$. To show by induction on $|w|$ that $w \in L(G)$. Base cases: $|w|=0 . \varepsilon \in L(G) . \checkmark$ No string with $|w|=1$ in $L(G) . \checkmark$

Induction step: Let $n \geq 2$. Suppose $u \in L(G)$ for all $u \in L$ with $|u|<n$. Let $w \in L$ be such that $|w|=n$; i.e., $\#_{0}(w)=\#_{1}(w)$.
Case $w=0 u 1$: Then $u \in L$ and $|u|<n$. By $\mid \mathrm{H}, u \in L(G)$. i.e., $\mathrm{S} \Rightarrow^{\star} u$. Hence, $\mathrm{S} \Rightarrow \mathrm{OS} 1 \Rightarrow^{*} 0 u 1=w$. (Case $w=1 u 0$ is symmetric.)
Case $w=0 u 0$: Let $d_{i}=\#_{0}(i-$ long prefix of $w)-\#_{1}(i$-long prefix of $w)$. Then $d_{1}=1, d_{n}=0, d_{n-1}=-1$. So $\exists 1<m \leq n-1$ s.t., $d_{m}=0$. i.e., $w=x y$, where $|x|,|y|<|w|$, and $x, y \in L$. By $\mathrm{H}, x, y \in L(G)$. Hence $\mathrm{S} \Rightarrow \mathrm{SS} \Rightarrow^{*} x y=w$.
(Case $w=1 u 1$ is symmetric.)

Proving Correctness of Grammars

Often will need to strengthen the claim to include strings generated by every variable in the grammar

Claim: Let $L=\left\{w \mid \#_{0}(w)=\#_{1}(w)\right\}$. Then, $L(G)=L$ where productions of G are:

$$
\begin{aligned}
& S \rightarrow \mathrm{AB}|\mathrm{BA}| \varepsilon \\
& \mathrm{A} \rightarrow 0|\mathrm{AS}| \mathrm{SA} \\
& \mathrm{~B} \rightarrow 1|\mathrm{BS}| \mathrm{SB}
\end{aligned}
$$

Stronger Claim:

A derives all strings w s.t. $\#_{0}(w)=\#_{1}(w)+1$.
B derives all strings w s.t. $\#_{1}(w)=\#_{0}(w)+1$.
S derives all strings w s.t. $\#_{0}(w)=\#_{1}(w)$.

Closure Properties for CFL

Union: If L_{1} and L_{2} are CFLs, so is $L_{1} \cup L_{2}$.
Let $G_{1}=\left(\Sigma, V_{1}, P_{1}, \mathrm{~S}_{1}\right), G_{2}=\left(\Sigma, V_{2}, P_{2}, \mathrm{~S}_{2}\right)$ with $V_{1} \cap V_{2}=\emptyset$.
Let $G=(\Sigma, V, P, \mathrm{~S})$ with $V=V_{1} \cup V_{2} \cup\{\mathrm{~S}\}$, and $P=P_{1} \cup P_{2} \cup\left\{\mathrm{~S} \rightarrow \mathrm{~S}_{1} \mid \mathrm{S}_{2}\right\}$. Then $L(\mathrm{G})=L\left(G_{1}\right) \cup L\left(G_{2}\right)$.

Concatenation: If L_{1} and L_{2} are CFLs, so is $L_{1} L_{2}$. Let $G_{1}=\left(\Sigma, V_{1}, P_{1}, \mathrm{~S}_{1}\right), G_{2}=\left(\Sigma, V_{2}, P_{2}, \mathrm{~S}_{2}\right)$ with $V_{1} \cap V_{2}=\emptyset$.

Let $G=(\Sigma, V, P, \mathrm{~S})$ with $V=V_{1} \cup V_{2} \cup\{\mathrm{~S}\}$, and $P=P_{1} \cup P_{2} \cup\left\{\mathrm{~S} \rightarrow \mathrm{~S}_{1} \mathrm{~S}_{2}\right\}$. Then $L(\mathrm{G})=L\left(G_{1}\right) L\left(G_{2}\right)$.

Kleene Star: If L_{1} is a CFL, so is L_{1} *.

$$
\text { Let } G_{1}=\left(\Sigma, V_{1}, P_{1}, \mathrm{~S}_{1}\right) \text {. }
$$

Let $G=(\Sigma, V, P, \mathrm{~S})$ with $V=V_{1} \cup\{\mathrm{~S}\}$, and $P=P_{l} \cup\left\{\mathrm{~S} \rightarrow \varepsilon \mid \mathrm{S}_{1}\right\}$. Then $L(\mathrm{G})=L\left(G_{1}\right)^{*}$.

Closure Properties for CFL

CFLs are not closed under intersection or complement
Intersection: $L_{1}=\left\{0^{i} 1 j 0^{k} \mid i=j\right\} \& L_{1}=\left\{0^{i} 1 j 0^{k} \mid j=k\right\}$ are CFLs. But it turns out that $L_{1} \cap L_{2}=\left\{0^{i} 1 j 0^{k} \mid i=j=k\right\}$ is not a CFL!

Complement: If CFLs were to be closed under complementation, since they are already closed under union, they would have been closed under intersection!

Grammars

Rewriting rules for generating strings from a "seed"
In an "unrestricted" grammar, the rules are of the form

$$
\alpha \rightarrow \beta \text { where } \alpha, \beta \in(\Sigma \cup V)^{*}
$$

Context-Free Grammar: Rewriting rules apply to individual variables (with no "context")

