
Context-Free Grammars 
(and Languages)

Lecture 7

1

C
S

37
4

Today

Beyond regular expressions:  
Context-Free Grammars (CFGs)

What is a CFG?  
What is the language associated with a CFG?

Creating CFGs. Reasoning about CFGs.

2

C
S

37
4

Compiler Frontend

3

for (i=0; i<n; i++) {
 a++;
}

Lexical 
Analyzer

 
 
 
!

for (id =
number ; id
< id ; id ++
) { id ++ ; }

Parser

 ;

for-stmt

expr expr expr stmt

=lval rval

id number

(; ;)

id ++<id id { stmt }

expr

id ++

for

stmt

Rules encoded as
regular expressions

Rules cannot be encoded as
regular expressions

C
S

37
4

Biological Models

4 en.wikipedia.org/wiki/L-system

C
S

37
4

Biological Models

5

Rule: | → |

C
S

37
4

Biological Models

6

Rule: | → | or |

Grammar: Rewriting rules for generating  
a set of strings (i.e., a language) from a “seed”

C
S

37
4

Example: a (simplistic) syntax for arithmetic expressions
expr → expr + expr 
expr → expr × expr 
expr → var 
var → a 
var → b 
var → c
 
e.g. expr ⇒* a + b × c

 
 
(This grammar is “ambiguous” since there is another
parse tree for the same string)

Context-Free Grammar

7

a

b c

var var

expr × exprvar

expr + expr

expr

“derives”

C
S

37
4

Context-Free Grammar
Example: a (simplistic) syntax for arithmetic expressions
expr → expr + expr 
expr → expr × expr 
expr → var 
var → a 
var → b 
var → c
 
e.g. expr ⇒* a + b × c

 
 

8

G = (Σ, V, P, S)#
Σ = {a,b,c,+,×} (terminals)#
V = {expr, var} (non-terminals)#
P = {(A,α) | A → α} (prod. rules)
S = expr (start symbol)“derives”

expr → expr + expr | expr × expr | var 
var → a | b | c

short-hand

C
S

37
4

Context-Free Grammar : Arrows
Production Rule: A → π , A∈V, π ∈ (Σ ∪ V)*!

 
Immediately Derives: α1 ⇒ α2 if α1, α2 ∈ (Σ ∪ V)*
s.t., α1 = βAγ, α2 = βπ γ and A → π %

 
 
Derives: α ⇒* α# if ∃α1,…, αt+1 ∈ (Σ ∪ V)* s.t. 
α1=α, αt+1=α#, and for all i ∈ [1, t], αi ⇒ αi+1

9

expr ⇒* expr + expr × expr !
expr ⇒* a + b × c

expr ⇒ expr + expr 
expr + expr ⇒ expr + expr × expr

⇒* var + var × var⇒* a + b × c

expr → expr + expr | expr × expr | var 
var → a | b | c

More clearly, if grammar is G,
we write α ⇒G* α#

t-step
derivation 
α ⇒t α#

C
S

37
4

Context-Free Languages

The language generated by a grammar G  
with start symbol S and alphabet Σ,  

L(G) = { w ∈ Σ* | S ⇒G* w }#

Languages generated by a context free grammars  
are called Context Free Languages (CFL)

10

C
S

37
4

Examples

L = { 0n1n | n ≥ 0 }!

S → ε | 0S1

L = { w | w = wR }#

S → ε | 0 | 1 | 0S0 | 1S1

L = { 0m1n | m < n }#

Z → ε | 0Z1 // 0n1n  

S → Z1 | S1 // 0m1n with m < n  

L = { 0m1n | m ≠ n }!

S → A | B 
Z → ε | 0Z1 // 0n1n  
A → 0Z | 0A // 0m1n with m > n  
B → Z1 | B1 // 0m1n with m < n

11

Over Σ = { 0,1 }, give a grammar for the following languages:

C
S

37
4

Parse Tree
Parse Tree captures the

structure of derivations for a
given string  

(but not the exact order)

The exact order of
derivations is not important

But structure is important!

Ambiguous grammar: If
some string has two different

parse trees

12

a

b c

var var

expr × exprvar

expr + expr

expr

expr ⇒* a + b × c

expr ⇒* expr + expr × expr ⇒* var + var × var ⇒* a + b × c!
expr ⇒* a + expr ⇒* a + expr × c ⇒* a + b × c

C
S

37
4

Ambiguity

13

expr ⇒* a + b × c

a

b c

var var

expr × exprvar

expr + expr

expr

c

var

expr×

a b

var var

expr + expr

expr

expr

expr → expr + expr | expr × expr | var 
var → a | b | c

C
S

37
4

An Unambiguous Grammar

14

expr ⇒* a + b × c

a

c

var

× term

b

var

var

term + expr

expr

expr → term + expr | term!
term → var | var × term 
var → a | b | c

term

In practice, unambiguous
grammars are important  

(e.g., in compilers)

Operator precedence enforced
by requiring all × carried out (to

get a “term”) before any +

There are CFLs which do not
have any unambiguous

grammar: 
inherently ambiguous languages

C
S

37
4

Examples
L = L(0*)#

S → ε | 0 | SS : Ambiguous!

S → ε | 0S : Unambiguous

L = set of all strings with balanced parentheses

S → ε | (S) | SS : Ambiguous!

T → () | (S)  
S → ε | TS : Unambiguous

15

C
S

37
4

Examples
L = set of all valid regular expressions over {0, 1}

An ambiguous grammar (start symbol S, Σ = {Ø,e,0,1,+,*,(,)}): 
S → Ø | e | 0 | 1 | (S) | S* | SS | S+S

An unambiguous grammar for a subset of regular expressions:  
S → Ø | e | 0 | 1 | (S) | (S*) | (SS) | (S+S)

16

Exercise: An unambiguous grammar
for all valid regular expressions

C
S

37
4

Proving Correctness of Grammars
Claim: Let L = { w | #0(w) = #1(w) }. Then, L(G) = L where  
 the productions of G are: S → 0S1 | 1S0 | SS | ε !

Proof: Need to prove both L(G) ⊆ L and L(G) ⊇ L.

Prove L(G) ⊆ L by induction on the length of derivations  
(or height of parse trees)!

Prove L(G) ⊇ L by induction on the length of strings.!

17

Challenge: Give an
unambiguous grammar

C
S

37
4

Proving Correctness of Grammars
Claim: Let L = { w | #0(w) = #1(w) }. Then, L(G) = L where  
 the productions of G are: S → 0S1 | 1S0 | SS | ε !

Proof: Proving L(G) ⊆ L by induction on the length of derivations.!

Let w ∈ L(G). S ⇒t w for some t ≥ 1. Induction on t to show that w ∈ L.
Base case: t=1. Only string derived is ε. ✓

Induction step: Consider t > 1. Suppose all u s.t. S ⇒k u, k < t, in L.  
Let w be such that S ⇒t w. i.e., S ⇒ α1 ⇒t-1 w.  
Case α1=0S1: w = 0u1 and S⇒t-1 u. By IH, #0(u)=#1(u).  
Hence #0(w) = #0(u)+1 = #1(v)+1 = #1(w). (Case α1=1S0 is symmetric.)
Case α1=SS: w = uv and S⇒m u, S⇒n v, 1 ≤ m,n < t (m+n = t-1). By IH,
#0(u)=#1(u) & #0(v)=#1(v). Hence #0(w) = #0(u)+#0(v) = #1(u)+#1(v) = #1(w)

18

C
S

37
4

Proving Correctness of Grammars
Claim: Let L = { w | #0(w) = #1(w) }. Then, L(G) = L where  
 the productions of G are: S → 0S1 | 1S0 | SS | ε !
Proof: Proving L(G) ⊇ L by induction on the length of strings.!

Suppose w ∈ L. To show by induction on |w| that w ∈ L(G). 
Base cases: |w|=0. ε ∈ L(G). ✓ No string with |w|=1 in L(G). ✓

Induction step: Let n ≥ 2. Suppose u ∈ L(G) for all u ∈ L with |u| < n. 
Let w ∈ L be such that |w|=n; i.e., #0(w)=#1(w).
Case w=0u1: Then u ∈ L and |u| < n. By IH, u ∈ L(G). i.e., S⇒*u.  
Hence, S ⇒ 0S1 ⇒* 0u1 = w. (Case w=1u0 is symmetric.) 
Case w=0u0: Let di = #0(i-long prefix of w) — #1(i-long prefix of w).  
Then d1 = 1, dn = 0, dn-1 = -1. So ∃ 1 < m ≤ n-1 s.t., dm = 0. i.e., w=xy, where  
|x|, |y| < |w|, and x,y ∈ L. By IH, x,y ∈ L(G). Hence S ⇒ SS ⇒* xy = w.  
(Case w=1u1 is symmetric.)

19

C
S

37
4

Proving Correctness of Grammars
Often will need to strengthen the claim to include strings
generated by every variable in the grammar!

Claim: Let L = { w | #0(w) = #1(w) }. Then, L(G) = L where
productions of G are:  
 S → AB | BA | ε 
 A → 0 | AS | SA  
 B → 1 | BS | SB!

Stronger Claim:  
A derives all strings w s.t. #0(w) = #1(w)+1. 
B derives all strings w s.t. #1(w) = #0(w)+1.  
S derives all strings w s.t. #0(w) = #1(w).

20

C
S

37
4

Closure Properties for CFL
Union: If L1 and L2 are CFLs, so is L1 ∪ L2.  

Let G1 = (Σ, V1, P1, S1), G2 = (Σ, V2, P2, S2) with V1 ∩ V2 = Ø.  
Let G = (Σ, V, P, S) with V = V1 ∪ V2 ∪ {S}, and 

P = P1 ∪ P2 ∪ { S → S1 | S2 }. Then L(G) = L(G1) ∪ L(G2).#

Concatenation: If L1 and L2 are CFLs, so is L1 L2.  
Let G1 = (Σ, V1, P1, S1), G2 = (Σ, V2, P2, S2) with V1 ∩ V2 = Ø.  

Let G = (Σ, V, P, S) with V = V1 ∪ V2 ∪ {S}, and 
P = P1 ∪ P2 ∪ { S → S1 S2 }. Then L(G) = L(G1) L(G2).#

Kleene Star: If L1 is a CFL, so is L1*.  
Let G1 = (Σ, V1, P1, S1).  

Let G = (Σ, V, P, S) with V = V1 ∪ {S}, and  
P = P1 ∪{ S → ε | S S1 }. Then L(G) = L(G1)*.

21

C
S

37
4

Closure Properties for CFL
CFLs are not closed under intersection or complement

Intersection: L1 = { 0i1j0k | i=j } & L1 = { 0i1j0k | j=k } are CFLs.
But it turns out that L1 ∩ L2 = { 0i1j0k | i=j=k } is not a CFL!

Complement: If CFLs were to be closed under
complementation, since they are already closed under
union, they would have been closed under intersection!

22

C
S

37
4

Rewriting rules for generating strings from a “seed”

In an “unrestricted” grammar, the rules are of the form  
α → β where α, β ∈ (Σ ∪ V)*

Context-Free Grammar: Rewriting rules apply to
individual variables (with no “context”)

Grammars

23

All languages

Languages with algorithms/
unrestricted grammars

Context Free Languages

Regular Languages

