CS 374: Algorithms \& Models of Computation, Fall 2015

Dynamic Programming

Lecture 11
October 1, 2015

Dynamic Programming

Dynamic Programming is smart recursion plus memoization

Dynamic Programming

Dynamic Programming is smart recursion plus memoization
Question: Suppose we have a recursive program $\mathbf{f o o (x)}$ that takes an input \mathbf{x}.

- On input of size \mathbf{n} the number of distinct sub-problems that $\mathbf{f o o (x)}$ generates is at most $\mathbf{A (n)}$
- foo(\mathbf{x}) spends at most $\mathbf{B (n)}$ time not counting the time for its recursive calls.
What is an upper bound on the running time of memoized version of $\mathbf{f o o}(\mathbf{x})$ if $|\mathbf{x}|=\mathbf{n}$?

Dynamic Programming

Dynamic Programming is smart recursion plus memoization
Question: Suppose we have a recursive program foo(x) that takes an input \mathbf{x}.

- On input of size \mathbf{n} the number of distinct sub-problems that foo(\mathbf{x}) generates is at most $\mathbf{A (n)}$
- foo(\mathbf{x}) spends at most $\mathbf{B}(\mathbf{n})$ time not counting the time for its recursive calls.
What is an upper bound on the running time of memoized version of $\mathbf{f o o}(\mathrm{x}) \mathrm{if}|\mathrm{x}|=\mathrm{n}$? $\mathbf{O}(\mathbf{A}(\mathrm{n}) \mathbf{B (n)})$.

Part I

Longest Increasing Subsequence

Sequences

Definition

Sequence: an ordered list $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{\mathbf{n}}$. Length of a sequence is number of elements in the list.

Definition

$a_{i_{1}}, \ldots, a_{i_{k}}$ is a subsequence of a_{1}, \ldots, a_{n} if
$\mathbf{1} \leq \mathbf{i}_{1}<\mathbf{i}_{2}<\ldots<\mathbf{i}_{\mathbf{k}} \leq \mathbf{n}$.

Definition

A sequence is increasing if $\mathbf{a}_{1}<\mathbf{a}_{2}<\ldots<\mathbf{a}_{\mathbf{n}}$. It is non-decreasing if $\mathbf{a}_{1} \leq \mathbf{a}_{\mathbf{2}} \leq \ldots \leq \mathbf{a}_{\mathbf{n}}$. Similarly decreasing and non-increasing.

Sequences

Example...

Example

(1) Sequence: 6, 3, 5, 2, 7, 8, 1, 9
(2) Subsequence of above sequence: 5, 2, 1
(3) Increasing sequence: $\mathbf{3 , 5 , 9 , 1 7 , 5 4}$
(- Decreasing sequence: $\mathbf{3 4}, \mathbf{2 1}, 7,5,1$

- Increasing subsequence of the first sequence: 2,7,9.

Longest Increasing Subsequence Problem

Input A sequence of numbers $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{\mathbf{n}}$
Goal Find an increasing subsequence $\mathbf{a}_{\mathbf{i}_{1}}, \mathbf{a}_{\mathbf{i}_{2}}, \ldots, \mathbf{a}_{\mathbf{i}_{k}}$ of maximum length

Longest Increasing Subsequence Problem

Input A sequence of numbers $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{\mathbf{n}}$ Goal Find an increasing subsequence $\mathbf{a}_{\mathbf{i}_{1}}, \mathbf{a}_{\mathbf{i}_{2}}, \ldots, \mathbf{a}_{\mathbf{i}_{\mathbf{k}}}$ of maximum length

Example

(1) Sequence: $6,3,5,2,7,8,1$
(2) Increasing subsequences: $6,7,8$ and $3,5,7,8$ and 2,7 etc
(0) Longest increasing subsequence: $3,5,7,8$

Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?
$\operatorname{LIS}(\mathbf{A}[\mathbf{1 . . n]}):$

Recursive Approach: Take 1

LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?
$\operatorname{LIS}(\mathbf{A}[\mathbf{1 . . n]})$:
(1) Case 1: Does not contain $\mathbf{A}[\mathbf{n}]$ in which case $\operatorname{LIS}(\mathbf{A}[\mathbf{1} . . \mathbf{n}])=\operatorname{LIS}(\mathbf{A}[\mathbf{1} . .(\mathbf{n} \mathbf{- 1})])$
(2) Case 2: contains $\mathbf{A}[\mathbf{n}]$ in which case $\operatorname{LIS}(\mathbf{A}[\mathbf{1} . . \mathbf{n}])$ is not so clear.

Observation

For second case we want to find a subsequence in $\mathbf{A}[\mathbf{1 . . (n - 1)] ~ t h a t ~}$ is restricted to numbers less than $\mathbf{A}[\mathbf{n}]$. This suggests that a more general problem is LIS_smaller(A[1..n], \mathbf{x}) which gives the longest increasing subsequence in \mathbf{A} where each number in the sequence is less than \mathbf{x}.

Recursive Approach

$\operatorname{LIS}(\mathbf{A}[\mathbf{1 . . n}])$: the length of longest increasing subsequence in \mathbf{A}
LIS_smaller(A[1..n], \mathbf{x}): length of longest increasing subsequence in $\mathbf{A}[1 . . \mathrm{n}]$ with all numbers in subsequence less than x

```
LIS_smaller(A[1..n], x) :
    if ( }\textrm{n}=0\mathrm{ ) then return 0
    m= LIS_smaller(A[1..(n-1)],x)
    if (A[n]<x) then
        m=max(m,1 + LIS_smaller(A[1..(n - 1)],A[n]))
```

 Output m
 $\operatorname{LIS}(A[1 . . n]):$
return LIS_smaller(A[1..n], ∞)

Example

Sequence: $\mathbf{A}[1 . .8]=6,3,5,2,7,8,1,9$

Recursive Approach

```
LIS_smaller (A[1..n], x) :
    if \((\mathbf{n}=0)\) then return 0
    \(\mathrm{m}=\) LIS_smaller(A[1..(n-1)], x)
    if \((A[n]<x)\) then
        \(m=\max (m, 1+\) LIS_smaller \((A[1 . .(n-1)], A[n]))\)
    Output m
```

$\operatorname{LIS}(A[1 . . n])$:
return LIS_smaller (A[1..n], ∞)

- How many distinct sub-problems will LIS_smaller(A[1..n], ∞) generate?

Recursive Approach

```
LIS_smaller (A[1..n], x) :
    if \((\mathbf{n}=0)\) then return 0
    \(\mathrm{m}=\) LIS_smaller(A[1..(n-1)], \(\mathbf{x}\) )
    if \((A[n]<x)\) then
        \(m=\max (m, 1+\) LIS_smaller \((A[1 . .(n-1)], A[n]))\)
    Output m
```

$\operatorname{LIS}(A[1 . . n])$:
return LIS_smaller (A[1..n], ∞)

- How many distinct sub-problems will LIS_smaller(A[1..n], ∞) generate? $\mathbf{O}\left(\mathbf{n}^{2}\right)$

Recursive Approach

```
LIS_smaller (A[1..n], x) :
    if \((\mathbf{n}=0)\) then return 0
    \(\mathrm{m}=\) LIS_smaller(A[1..(n-1)], x)
    if \((A[n]<x)\) then
        \(m=\max (m, 1+\) LIS_smaller \((A[1 . .(n-1)], A[n]))\)
    Output m
```

LIS (A[1..n]) :
return LIS_smaller (A[1..n], ∞)

- How many distinct sub-problems will LIS_smaller(A[1..n], ∞) generate? $\mathbf{O}\left(\mathbf{n}^{2}\right)$
- What is the running time if we memoize recursion?

Recursive Approach

```
LIS_smaller (A[1..n], x) :
    if \((\mathbf{n}=0)\) then return 0
    \(\mathrm{m}=\) LIS_smaller(A[1..(n-1)], \(\mathbf{x}\) )
    if \((A[n]<x)\) then
        \(m=\max (m, 1+\) LIS_smaller \((A[1 . .(n-1)], A[n]))\)
```

 Output m
 $\operatorname{LIS}(A[1 . . n])$:
return LIS_smaller (A[1..n], ∞)

- How many distinct sub-problems will LIS_smaller(A[1..n], ∞) generate? $\mathbf{O}\left(\mathbf{n}^{2}\right)$
- What is the running time if we memoize recursion? $\mathbf{O}\left(\mathbf{n}^{2}\right)$ since each call takes $\mathbf{O (1)}$ time to assemble the answers from to recursive calls and no other computation.

Recursive Approach

```
LIS_smaller (A[1..n], x) :
    if \((\mathbf{n}=0)\) then return 0
    \(m=\) LIS_smaller(A[1..(n-1)],x)
    if \((A[n]<x)\) then
        \(m=\max (m, 1+\) LIS_smaller \((A[1 . .(n-1)], A[n]))\)
```

 Output m
 $\operatorname{LIS}(A[1 . . n])$:
return LIS_smaller (A[1..n], ∞)

- How many distinct sub-problems will LIS_smaller(A[1..n], ∞) generate? $\mathbf{O}\left(\mathbf{n}^{2}\right)$
- What is the running time if we memoize recursion? $\mathbf{O}\left(\mathbf{n}^{2}\right)$ since each call takes $\mathbf{O (1)}$ time to assemble the answers from to recursive calls and no other computation.
- How much space for memoization?

Recursive Approach

```
LIS_smaller (A[1..n], x) :
    if \((\mathbf{n}=0)\) then return 0
    \(m=\) LIS_smaller (A[1..( \(n-1)], x)\)
    if \((A[n]<x)\) then
        \(m=\max (m, 1+\) LIS_smaller \((A[1 . .(n-1)], A[n]))\)
```

 Output m
 LIS (A[1..n]) :
return LIS_smaller (A[1..n], ∞)

- How many distinct sub-problems will LIS_smaller(A[1..n], ∞) generate? $\mathbf{O}\left(\mathbf{n}^{2}\right)$
- What is the running time if we memoize recursion? $\mathbf{O}\left(\mathbf{n}^{2}\right)$ since each call takes $\mathbf{O (1)}$ time to assemble the answers from to recursive calls and no other computation.
- How much space for memoization? $\mathbf{O}\left(\mathbf{n}^{2}\right)$

Recursive Algorithm: Take 2

Definition
LISEnding(A[1..n]): length of longest increasing sub-sequence that ends in $\mathbf{A}[\mathbf{n}]$.

Question: can we obtain a recursive expression?

$$
\begin{aligned}
& 6,3,5,2,7,8,1,9 \\
& \operatorname{LISE}(A[1 . .8]]=4 \\
& \operatorname{CISE}(A[1 \ldots 7])=1 \quad(3,5,7,8,9) \\
&(A[1 \ldots 6])=14 \\
&(3,5,7,8)
\end{aligned}
$$

Recursive Algorithm: Take 2

Definition

LISEnding(A[1..n]): length of longest increasing sub-sequence that ends in $\mathbf{A}[\mathbf{n}]$.

Question: can we obtain a recursive expression?

$$
\operatorname{LISEnding}(A[1 . . n])=\max _{\mathrm{i}: A[i j<A[n]}(1+\operatorname{LISEnding}(A[1 . . i]))
$$

Example
Sequence: $A[1 . .8]=6,3,5,2,7,8,1,9$

Recursive Algorithm: Take 2

```
LIS_ending_alg (A[1..n]) :
if \((\mathbf{n}=\mathbf{0})\) return 0
m \(=1\)
for \(\mathbf{i}=\mathbf{1}\) to \(\mathbf{n}-\mathbf{1}\) do
        if ( \(A[i]<A[n]\) ) then
        \(\mathbf{m}=\max (\mathrm{m}, 1+\) LIS_ending_alg(A[1..i]) \()\)
    return m
```

```
LIS(A[1..n]) :
    return maxi=1 LIS_ending_alg(A[1...i])
```


Recursive Algorithm: Take 2

```
LIS_ending_alg (A[1..n]) :
if \((\mathbf{n}=\mathbf{0})\) return 0
m \(=1\)
for \(\mathbf{i}=\mathbf{1}\) to \(\mathbf{n}-\mathbf{1}\) do
        if ( \(A[i]<A[n]\) ) then
        \(\mathbf{m}=\max (\mathrm{m}, 1+\) LIS_ending_alg(A[1..i] \())\)
```

 return m
 LIS (A[1..n]) :
return max ${ }_{i=1}^{n}$ LIS_ending_alg(A[1...i])

- How many distinct sub-problems will LIS_ending_alg(A[1..n]) generate?

Recursive Algorithm: Take 2

```
LIS_ending_alg (A[1..n]) :
if \((\mathbf{n}=\mathbf{0})\) return 0
m \(=1\)
for \(\mathbf{i}=\mathbf{1}\) to \(\mathbf{n}-\mathbf{1}\) do
        if ( \(A[i]<A[n]\) ) then
        \(\mathbf{m}=\max (\mathrm{m}, 1+\) LIS_ending_alg(A[1..i] \())\)
```

 return m
 LIS (A[1..n]) :
return max ${ }_{i=1}^{n}$ LIS_ending_alg(A[1...i])

- How many distinct sub-problems will LIS_ending_alg(A[1..n]) generate? $\mathbf{O}(n)$

Recursive Algorithm: Take 2

```
LIS_ending_alg(A[1..n]) :
if \((\mathbf{n}=\mathbf{0})\) return 0
m \(=1\)
for \(\mathbf{i}=\mathbf{1}\) to \(\mathbf{n}-\mathbf{1}\) do
        if ( \(A[i]<A[n]\) ) then
        \(m=\max (m, 1+\) LIS_ending_alg(A[1..i]) \()\)
```

 return m
 LIS (A[1..n]) :
return max ${ }_{i=1}^{n}$ LIS_ending_alg(A[1...i])

- How many distinct sub-problems will LIS_ending_alg(A[1..n]) generate? $\mathbf{O}(n)$
- What is the running time if we memoize recursion?

Recursive Algorithm: Take 2

```
LIS_ending_alg(A[1..n]) :
if \((\mathbf{n}=\mathbf{0})\) return 0
m \(=1\)
for \(\mathbf{i}=\mathbf{1}\) to \(\mathbf{n}-\mathbf{1}\) do
        if ( \(A[i]<A[n]\) ) then
        \(m=\max (m, 1+\) LIS_ending_alg(A[1..i]) \()\)
```

 return m
 $\operatorname{LIS}(A[1 . . n])$:
return max ${ }_{i=1}^{\text {n }}$ LIS_ending_alg(A[1...i])

- How many distinct sub-problems will LIS_ending_alg(A[1..n]) generate? $\mathbf{O}(n)$
- What is the running time if we memoize recursion? $\mathbf{O}\left(\mathbf{n}^{2}\right)$ since each call takes $\mathbf{O}(\mathbf{n})$ time

Recursive Algorithm: Take 2

```
LIS_ending_alg(A[1..n]) :
if \((\mathbf{n}=\mathbf{0})\) return 0
\(\mathrm{m}=1\)
for \(\mathbf{i}=\mathbf{1}\) to \(\mathbf{n}-\mathbf{1}\) do
        if ( \(A[i]<A[n]\) ) then
        \(m=\max (m, 1+\) LIS_ending_alg(A[1..i]) \()\)
```

 return m
 LIS (A[1..n]) :
return max ${ }_{i=1}^{n}$ LIS_ending_alg(A[1...i])

- How many distinct sub-problems will LIS_ending_alg(A[1..n]) generate? $\mathbf{O}(n)$
- What is the running time if we memoize recursion? $\mathbf{O}\left(\mathbf{n}^{2}\right)$ since each call takes $\mathbf{O}(\mathbf{n})$ time
- How much space for memoization?

Recursive Algorithm: Take 2

```
LIS_ending_alg (A[1..n]) :
if \((\mathbf{n}=\mathbf{0})\) return 0
m \(=1\)
for \(\mathbf{i}=\mathbf{1}\) to \(\mathbf{n}-\mathbf{1}\) do
        if ( \(A[i]<A[n]\) ) then
        \(m=\max (m, 1+\) LIS_ending_alg(A[1..i]) \()\)
```

 return m
 $\operatorname{LIS}(A[1 . . n])$:
return max ${ }_{i=1}^{\text {n }}$ LIS_ending_alg(A[1...i])

- How many distinct sub-problems will LIS_ending_alg(A[1..n]) generate? $\mathbf{O}(n)$
- What is the running time if we memoize recursion? $\mathbf{O}\left(\mathbf{n}^{2}\right)$ since each call takes $\mathbf{O}(\mathbf{n})$ time
- How much space for memoization? O(n)

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often convert the recursive algorithm into an iterative algorithm via explicit memoization and bottom up computation.

Why?

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often convert the recursive algorithm into an iterative algorithm via explicit memoization and bottom up computation.

Why? Mainly for further optimization of running time and space.

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often convert the recursive algorithm into an iterative algorithm via explicit memoization and bottom up computation.

Why? Mainly for further optimization of running time and space.

How?

- First, allocate a data structure (usually an array or a multi-dimensional array that can hold values for each of the subproblems)
- Figure out a way to order the computation of the sub-problems starting from the base case.

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often convert the recursive algorithm into an iterative algorithm via explicit memoization and bottom up computation.

Why? Mainly for further optimization of running time and space.
How?

- First, allocate a data structure (usually an array or a multi-dimensional array that can hold values for each of the subproblems)
- Figure out a way to order the computation of the sub-problems starting from the base case.

Caveat: Dynamic programming is not about filling tables. It is about finding a smart recursion. First, find the correct

Iterative Algorithm via Memoization

Compute the values LIS_ending_alg(A[1..i]) iteratively in a bottom up fashion.

LIS_ending_alg (A[1..n]) :
Array L[1..n] (* L[i] = value of LIS_ending_alg (A[1..i]) *) for $\mathbf{i}=\mathbf{1}$ to \mathbf{n} do

$$
\mathrm{L}[\mathrm{i}]=1
$$

$$
\text { for } j=1 \text { to } i-1 \text { do }
$$

$$
\text { if }(A[j]<A[i]) \text { do }
$$

$$
\mathrm{L}[\mathrm{i}]=\max (\mathrm{L}[\mathrm{i}], 1+\mathrm{L}[\mathrm{j}])
$$

return L

$$
\operatorname{LIS}(A[1 . . n]):
$$

L = LIS_ending_alg(A[1..n])
return the maximum value in \mathbf{L}

Iterative Algorithm via Memoization

Simplifying:
LIS(A[1..n]) :
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *) m $=0$
for $\mathbf{i}=\mathbf{1}$ to \mathbf{n} do
$\mathrm{L}[\mathrm{i}]=1$
for $\mathrm{j}=1$ to $\mathrm{i}-\mathbf{1}$ do
if $(\mathbf{A}[\mathrm{j}]<\mathbf{A}[\mathrm{i}])$ do
$\mathrm{L}[\mathrm{i}]=\max (\mathrm{L}[\mathrm{i}], 1+\mathrm{L}[\mathrm{j}])$
$\mathbf{m}=\max (\mathrm{m}, \mathrm{L}[\mathrm{i}])$
return m

Iterative Algorithm via Memoization

Simplifying:
LIS(A[1..n]) :
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *) $\mathrm{m}=0$
for $\mathbf{i}=\mathbf{1}$ to \mathbf{n} do
$\mathrm{L}[\mathrm{i}]=1$
for $\mathrm{j}=1$ to $\mathbf{i}-\mathbf{1}$ do
if $(\mathbf{A}[\mathrm{j}]<\mathbf{A}[\mathrm{i}])$ do
$\mathrm{L}[\mathrm{i}]=\max (\mathrm{L}[\mathrm{i}], 1+\mathrm{L}[\mathrm{j}])$
$m=\max (\mathrm{m}, \mathrm{L}[\mathrm{i}])$
return m
Correctness: Via induction following the recursion Running time:

Iterative Algorithm via Memoization

Simplifying:
LIS(A[1..n]):
Array $\mathrm{L}[1 . . \mathrm{n}]$ (* $\mathrm{L}[\mathrm{i}]$ stores the value LISEnding (A[1..i]) *) $\mathrm{m}=0$
for $\mathbf{i}=\mathbf{1}$ to \mathbf{n} do
$\mathrm{L}[\mathrm{i}]=1$
for $\mathrm{j}=1$ to $\mathbf{i}-\mathbf{1}$ do
if $(\mathbf{A}[\mathrm{j}]<\mathbf{A}[\mathrm{i}])$ do
$\mathrm{L}[\mathrm{i}]=\max (\mathrm{L}[\mathrm{i}], 1+\mathrm{L}[\mathrm{j}])$
$\mathbf{m}=\max (\mathrm{m}, \mathrm{L}[\mathrm{i}])$
return m
Correctness: Via induction following the recursion
Running time: $\mathbf{O}\left(\mathbf{n}^{\mathbf{2}}\right)$
Space:

Iterative Algorithm via Memoization

Simplifying:
LIS(A[1..n]):

```
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)
m \(=0\)
for \(\mathbf{i}=\mathbf{1}\) to \(\mathbf{n}\) do
    \(\mathrm{L}[\mathrm{i}]=1\)
    for \(\mathrm{j}=1\) to \(\mathbf{i}-\mathbf{1}\) do
        if \((\mathbf{A}[\mathrm{j}]<\mathbf{A}[\mathrm{i}])\) do
        \(\mathrm{L}[\mathrm{i}]=\max (\mathrm{L}[\mathrm{i}], 1+\mathrm{L}[\mathrm{j}])\)
    \(\mathbf{m}=\max (\mathrm{m}, \mathrm{L}[\mathrm{i}])\)
    return m
```

Correctness: Via induction following the recursion Running time: $\mathbf{O}\left(\mathbf{n}^{\mathbf{2}}\right)$
Space: $\boldsymbol{\Theta}(\mathbf{n})$

Iterative Algorithm via Memoization

Simplifying:
LIS(A[1..n]) :

```
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)
m \(=0\)
for \(\mathbf{i}=\mathbf{1}\) to \(\mathbf{n}\) do
    \(\mathrm{L}[\mathrm{i}]=1\)
    for \(\mathrm{j}=1\) to \(\mathrm{i}-1\) do
        if \((\mathbf{A}[\mathrm{j}]<\mathbf{A}[\mathrm{i}])\) do
        \(\mathrm{L}[\mathrm{i}]=\max (\mathrm{L}[\mathrm{i}], 1+\mathrm{L}[\mathrm{j}])\)
    \(\mathbf{m}=\max (\mathrm{m}, \mathrm{L}[\mathrm{i}])\)
    return m
```

Correctness: Via induction following the recursion Running time: $\mathbf{O}\left(\mathbf{n}^{\mathbf{2}}\right)$
Space: $\boldsymbol{\Theta}(\mathbf{n})$
$\mathbf{O}(\mathbf{n} \log \mathbf{n})$ run-time achievable via better data structures.

Example
Example

- Sequence: 6, 3, 5, 2, 7, 8, 1, 9
- Longest increasing subsequence: $3,5,7,8,9$

$$
\begin{aligned}
& L[1 . .8] \quad L[i]=L \text { Sending }(A[1 . . i]) \\
& L[1]=1 \\
& L[2]=\max ((\$ 1,1+1+0)=1 \\
& L[3)=\max (1,1+L[2], 1+0)= \\
& L[4]=\max (1,1+0) \\
& L[5]=
\end{aligned}
$$

Example

Example

(1) Sequence: $6,3,5,2,7,8,1$
(2) Longest increasing subsequence: $3,5,7,8$
(1) $\mathrm{L}[\mathbf{i}]$ is value of longest increasing subsequence ending in $\mathbf{A}[\mathbf{i}]$
(2) Recursive algorithm computes $L[i]$ from $L[1]$ to $L[i-1]$
(3) Iterative algorithm builds up the values from $L[1]$ to $L[n]$

Computing Solutions

(1) Memoization + Recursion/Iteration allows one to compute the optimal value. What about the actual sub-sequence?
(2) Two methods
(1) Explicit: For each subproblem find an optimum solution for that subproblem while computing the optimum value for that subproblem. Typically slow but automatic.
(2) Implicit: For each subproblem keep track of sufficient information (decision) on how optimum solution for subproblem was computed. Reconstruct optimum solution later via stored information. Typically much more efficient but requires more thought.

Computing Solution: Explicit method for LIS

LIS (A[1..n]) :

```
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)
Array S[1..n] (* S[i] stores the sequence achieving L[i] *)
\(\mathrm{m}=0\)
\(h=0\)
for \(\mathbf{i}=\mathbf{1}\) to \(\mathbf{n}\) do
    \(\mathrm{L}[\mathrm{i}]=1\)
    \(\mathrm{S}[\mathrm{i}]=[\mathrm{i}]\)
    for \(\mathrm{j}=1\) to \(\mathbf{i}-\mathbf{1}\) do
        if ( \(\mathrm{A}[\mathrm{j}]<\mathrm{A}[\mathrm{i}]\) ) and ( \(\mathrm{L}[\mathrm{i}]<\mathbf{1}+\mathrm{L}[\mathrm{j}]\) ) do
            \(\mathrm{L}[\mathrm{i}]=1+\mathrm{L}[\mathrm{j}]\)
            \(\mathrm{S}[\mathrm{i}]=\operatorname{concat}(\mathrm{S}[\mathrm{j}],[\mathrm{i}])\)
    if \((\mathbf{m}<\mathrm{L}[\mathrm{i}]) \mathrm{m}=\mathrm{L}[\mathrm{i}], \mathrm{h}=\mathbf{i}\)
```

return m, S[h]

Computing Solution: Explicit method for LIS

LIS (A[1..n]) :

```
Array L[1..n] (* L[i] stores the value LISEnding(A[1..i]) *)
Array S[1..n] (* S[i] stores the sequence achieving L[i] *)
\(\mathrm{m}=0\)
\(h=0\)
for \(\mathbf{i}=\mathbf{1}\) to \(\mathbf{n}\) do
    \(\mathrm{L}[\mathrm{i}]=1\)
    \(\mathrm{S}[\mathrm{i}]=[\mathrm{i}]\)
    for \(\mathrm{j}=1\) to \(\mathbf{i}-\mathbf{1}\) do
        if ( \(\mathrm{A}[\mathrm{j}]<\mathrm{A}[\mathrm{i}]\) ) and ( \(\mathrm{L}[\mathrm{i}]<\mathbf{1}+\mathrm{L}[\mathrm{j}]\) ) do
        \(\mathrm{L}[\mathrm{i}]=1+\mathrm{L}[\mathrm{j}]\)
            \(\mathrm{S}[\mathrm{i}]=\operatorname{concat}(\mathrm{S}[\mathrm{j}],[\mathrm{i}])\)
        if \((\mathbf{m}<\mathrm{L}[\mathrm{i}]) \mathrm{m}=\mathrm{L}[\mathrm{i}], \mathrm{h}=\mathbf{i}\)
```

return $m, S[h]$
Running time: $\mathbf{O}\left(\mathbf{n}^{\mathbf{3}}\right)$ Space: $\mathbf{O}\left(\mathbf{n}^{\mathbf{2}} \mathbf{)}\right.$. Extra time/space to store, copy

Computing Solution: Implicit method for LIS

LIS (A[1..n]) :

Array D[1..n] (* D[i] stores how L[i] was computed *)
$\mathrm{m}=0$
$h=0$
for $\mathbf{i}=\mathbf{1}$ to \mathbf{n} do
$\mathrm{L}[\mathrm{i}]=1$
$\mathrm{D}[\mathrm{i}]=\mathrm{i}$
for $\mathrm{j}=1$ to $\mathrm{i}-\mathbf{1}$ do
if ($\mathbf{A}[\mathrm{j}]<\mathbf{A}[\mathrm{i}]$) and ($\mathrm{L}[\mathrm{i}]<\mathbf{1}+\mathrm{L}[\mathrm{j}]$) do
$\mathrm{L}[\mathrm{i}]=1+\mathrm{L}[\mathrm{j}]$
$D[i]=j$
if $(\mathbf{m}<\mathrm{L}[\mathrm{i}]) \mathrm{m}=\mathrm{L}[\mathrm{i}], \mathrm{h}=\mathbf{i}$
$\mathbf{m}=\mathrm{L}[\mathbf{h}]$ is optimum value

Computing Solution: Implicit method for LIS

LIS (A[1..n]) :

Array L[1..n] (* L[i] stores the value LISEnding(A[1...i]) *)
Array $\mathrm{D}[1 . . \mathrm{n}]$ (* $\mathrm{D}[\mathrm{i}]$ stores how $\mathrm{L}[\mathrm{i}]$ was computed $*$)
$\mathrm{m}=0$
$h=0$
for $\mathbf{i}=\mathbf{1}$ to \mathbf{n} do
$\mathrm{L}[\mathrm{i}]=1$
$\mathrm{D}[\mathrm{i}]=\mathrm{i}$
for $\mathbf{j}=1$ to $\mathbf{i}-\mathbf{1}$ do
if ($\mathrm{A}[\mathrm{j}]<\mathrm{A}[\mathrm{i}]$) and ($\mathrm{L}[\mathrm{i}]<\mathbf{1}+\mathrm{L}[\mathrm{j}]$) do
$\mathrm{L}[\mathrm{i}]=1+\mathrm{L}[\mathrm{j}]$
$D[i]=j$
if $(\mathbf{m}<\mathrm{L}[\mathrm{i}]) \mathbf{m}=\mathrm{L}[\mathrm{i}], \mathrm{h}=\mathbf{i}$
$\mathbf{m}=\mathbf{L}[\mathbf{h}]$ is optimum value

Question: Can we obtain solution from stored \mathbf{D} values and \mathbf{h} ?

Computing Solution: Implicit method for LIS

LIS (A[1..n]) :

```
Array \(\mathrm{L}[1 . . n]\) (* L[i] stores the value LISEnding(A[1..i]) *)
    Array \(\mathrm{D}[1 . . \mathrm{n}]\) (* \(\mathrm{D}[\mathrm{i}]\) stores how \(\mathrm{L}[\mathrm{i}]\) was computed \(*\) )
    \(\mathrm{m}=0, \mathrm{~h}=0\)
    for \(\mathbf{i}=\mathbf{1}\) to \(\mathbf{n}\) do
        \(\mathrm{L}[\mathrm{i}]=1\)
    \(\mathrm{D}[\mathrm{i}]=0\)
    for \(\mathbf{j}=1\) to \(\mathbf{i}-\mathbf{1}\) do
        if ( \(\mathrm{A}[\mathrm{j}]<\mathrm{A}[\mathrm{i}]\) ) and ( \(\mathrm{L}[\mathrm{i}]<\mathbf{1}+\mathrm{L}[\mathrm{j}]\) ) do
        \(\mathrm{L}[\mathrm{i}]=1+\mathrm{L}[\mathrm{j}], \mathrm{D}[\mathrm{i}]=\mathrm{j}\)
    if \((\mathbf{m}<\mathrm{L}[\mathrm{i}]) \mathbf{m}=\mathrm{L}[\mathrm{i}], \mathrm{h}=\mathbf{i}\)
    \(\mathbf{S}=\) empty sequence
    while ( \(h>0\) ) do
        add \(\mathbf{L}[\mathbf{h}]\) to front of \(\mathbf{S}\)
        \(h=D[h]\)
    Output optimum value \(\mathbf{m}\), and an optimum subsequence \(\mathbf{S}\)
```


Computing Solution: Implicit method for LIS

LIS (A[1..n]) :

```
Array \(\mathrm{L}[1 . . n]\) (* L[i] stores the value LISEnding(A[1..i]) *)
    Array \(\mathrm{D}[1 . . \mathrm{n}]\) (* \(\mathrm{D}[\mathrm{i}]\) stores how \(\mathrm{L}[\mathrm{i}]\) was computed \(*\) )
    \(\mathrm{m}=0, \mathrm{~h}=0\)
    for \(\mathbf{i}=\mathbf{1}\) to \(\mathbf{n}\) do
        \(\mathrm{L}[\mathrm{i}]=1\)
        \(\mathrm{D}[\mathrm{i}]=0\)
        for \(\mathrm{j}=1\) to \(\mathbf{i}-1\) do
        if ( \(\mathrm{A}[\mathrm{j}]<\mathrm{A}[\mathrm{i}]\) ) and ( \(\mathrm{L}[\mathrm{i}]<\mathbf{1}+\mathrm{L}[\mathrm{j}]\) ) do
        \(\mathrm{L}[\mathrm{i}]=1+\mathrm{L}[\mathrm{j}], \mathrm{D}[\mathrm{i}]=\mathrm{j}\)
    if \((\mathbf{m}<\mathrm{L}[\mathrm{i}]) \mathbf{m}=\mathrm{L}[\mathrm{i}], \mathrm{h}=\mathbf{i}\)
    \(\mathbf{S}=\) empty sequence
    while ( \(h>0\) ) do
        add \(\mathbf{L}[\mathbf{h}]\) to front of \(\mathbf{S}\)
        \(h=D[h]\)
    Output optimum value \(\mathbf{m}\), and an optimum subsequence \(\mathbf{S}\)
```

Running time: $\mathbf{O}\left(\mathbf{n}^{\mathbf{2}}\right)$ Space: $\mathbf{O (n)}$.

Dynamic Programming

(1) Find a "smart" recursion for the problem in which the number of distinct subproblems is small; polynomial in the original problem size.
(2) Estimate the number of subproblems, the time to evaluate each subproblem and the space needed to store the value. This gives an upper bound on the total running time if we use automatic memoization.
(0 Eliminate recursion and find an iterative algorithm to compute the problems bottom up by storing the intermediate values in an appropriate data structure; need to find the right way or order the subproblem evaluation. This leads to an explicit algorithm.

- Optimize the resulting algorithm further

Part II

Checking if string in

Problem

Input A string $\mathbf{w} \in \boldsymbol{\Sigma}^{*}$ and access to a language $\mathbf{L} \subseteq \boldsymbol{\Sigma}^{*}$ via function IsStringinL(string \mathbf{x}) that decides whether \mathbf{x} is in L
Goal Decide if $\mathbf{w} \in \mathbf{L}^{*}$ using IsStringinL(string \mathbf{x}) as a black box sub-routine

Example

Suppose L is English and we have a procedure to check whether a string/word is in the English dictionary.

- Is the string "isthisanenglishsentence" in English*?
- Is "stampstamp" in English*?
- Is "zibzzzad" in English*?

Recursive Solution

When is $\mathbf{w} \in \mathbf{L}^{*}$?

Recursive Solution

When is $\mathbf{w} \in \mathbf{L}^{*}$?
$\mathbf{w} \in \mathbf{L}^{*}$ if $\mathbf{w} \in \mathbf{L}$ or if $\mathbf{w}=\mathbf{u v}$ where $\mathbf{u} \in \mathbf{L}$ and $\mathbf{v} \in \mathbf{L}^{*}$

Recursive Solution

When is $\mathbf{w} \in \mathbf{L}^{*}$?
$\mathbf{w} \in \mathbf{L}^{*}$ if $\mathbf{w} \in \mathbf{L}$ or if $\mathbf{w}=\mathbf{u v}$ where $\mathbf{u} \in \mathbf{L}$ and $\mathbf{v} \in \mathbf{L}^{*}$
Assume wis stored in array \mathbf{A} [1..n]
IsStringinLstar(A[1..n]):
If (IsStringinL(A[1..n]))
Output YES
Else

$$
\text { For (} \mathbf{i}=\mathbf{1} \text { to } \mathbf{n}-\mathbf{1} \text {) do }
$$

If (IsStringinL(A[1..i]) and IsStringinLstar(A[i+1..n])) Output YES

Output NO

Recursive Solution

Assume w is stored in array $\mathbf{A}[\mathbf{1 . . n}]$
IsStringinLstar(A[1..n]):
If (IsStringinL(A[1..n])) Output YES
Else

$$
\text { For (} \mathbf{i}=\mathbf{1} \text { to } \mathbf{n}-\mathbf{1} \text {) do }
$$

If (IsStringinL(A[1..i]) and IsStringinLstar(A[i+1..n]))
Output YES
Output NO

- How many distinct sub-problems does IsStringinLstar(A[1..n]) generate?

Recursive Solution

Assume w is stored in array $\mathbf{A}[\mathbf{1 . . n}]$
IsStringinLstar(A[1..n]):
If (IsStringinL(A[1..n])) Output YES
Else

$$
\text { For (} \mathbf{i}=\mathbf{1} \text { to } \mathbf{n}-\mathbf{1} \text {) do }
$$

If (IsStringinL(A[1..i]) and IsStringinLstar(A[i+1..n]))
Output YES
Output NO

- How many distinct sub-problems does IsStringinLstar(A[1..n]) generate? $\mathbf{O}(n)$

Recursive Solution

Assume w is stored in array $\mathbf{A}[\mathbf{1 . . n}]$
IsStringinLstar(A[1..n]):
If (IsStringinL(A[1..n])) Output YES
Else

$$
\text { For (} \mathbf{i}=\mathbf{1} \text { to } \mathbf{n}-\mathbf{1} \text {) do }
$$

If (IsStringinL(A[1..i]) and IsStringinLstar(A[i+1..n])) Output YES

Output NO

- How many distinct sub-problems does IsStringinLstar(A[1..n]) generate? $\mathbf{O}(n)$
- What is running time of memoized version of IsStringinLstar(A[1..n])?

Recursive Solution

Assume w is stored in array \mathbf{A} [1..n]
IsStringinLstar(A[1..n]):
If (IsStringinL(A[1..n])) Output YES
Else

$$
\text { For (} \mathbf{i}=\mathbf{1} \text { to } \mathbf{n}-\mathbf{1} \text {) do }
$$

If (IsStringinL(A[1..i]) and IsStringinLstar(A[i+1..n])) Output YES

Output NO

- How many distinct sub-problems does IsStringinLstar(A[1..n]) generate? $\mathbf{O}(n)$
- What is running time of memoized version of IsStringinLstar(A[1..n])? $\mathbf{O}\left(\mathbf{n}^{2}\right)$

Recursive Solution

Assume w is stored in array $\mathbf{A}[\mathbf{1 . . n}]$
IsStringinLstar(A[1..n]):
If (IsStringinL(A[1..n])) Output YES
Else

$$
\text { For (} \mathbf{i}=\mathbf{1} \text { to } \mathbf{n}-\mathbf{1} \text {) do }
$$

If (IsStringinL(A[1..i]) and IsStringinLstar(A[i+1..n])) Output YES

Output NO

- How many distinct sub-problems does IsStringinLstar(A[1..n]) generate? $\mathbf{O}(\mathrm{n})$
- What is running time of memoized version of IsStringinLstar(A[1..n])? O(n ${ }^{2}$)
- What is space requirement of memoized version of IsStringinLstar(A[1..n])?

Recursive Solution

Assume w is stored in array $\mathbf{A}[\mathbf{1 . . n}]$
IsStringinLstar(A[1..n]):
If (IsStringinL(A[1..n])) Output YES
Else

$$
\text { For (} \mathbf{i}=\mathbf{1} \text { to } \mathbf{n}-\mathbf{1} \text {) do }
$$

If (IsStringinL(A[1..i]) and IsStringinLstar(A[i+1..n])) Output YES

Output NO

- How many distinct sub-problems does IsStringinLstar(A[1..n]) generate? $\mathbf{O}(\mathrm{n})$
- What is running time of memoized version of IsStringinLstar(A[1..n])? O(n ${ }^{2}$)
- What is space requirement of memoized version of IsStringinLstar(A[1..n])? O(n)

A variation

Input A string $\mathbf{w} \in \boldsymbol{\Sigma}^{*}$ and access to a language $\mathbf{L} \subseteq \boldsymbol{\Sigma}^{*}$ via function IsStringinL(string \mathbf{x}) that decides whether \mathbf{x} is in \mathbf{L}, and non-negative integer \mathbf{k}
Goal Decide if $\mathbf{w} \in \mathbf{L}^{\mathbf{k}}$ using IsStringinL(string \mathbf{x}) as a black box sub-routine

Example

Suppose L is English and we have a procedure to check whether a string/word is in the English dictionary.

- Is the string "isthisanenglishsentence" in English ${ }^{5}$?
- Is the string "isthisanenglishsentence" in English ${ }^{4}$?
- Is "asinineat" in English ${ }^{2}$?
- Is "asinineat" in English ${ }^{4}$?
- Is "zibzzzad" in English?

Recursive Solution

When is $\mathbf{w} \in \mathbf{L}^{\mathrm{k}}$?

Recursive Solution

When is $\mathbf{w} \in \mathbf{L}^{\mathrm{k}}$?
$k=0: w \in L^{k}$ iff $w=\epsilon$
$\mathbf{k}=\mathbf{1}: \mathbf{w} \in \mathbf{L}^{\mathrm{k}}$ iff $\mathbf{w} \in \mathbf{L}$
$\mathbf{k}>\mathbf{1}: \mathbf{w} \in \mathbf{L}^{\mathbf{k}}$ if $\mathbf{w}=\mathbf{u v}$ with $\mathbf{u} \in \mathbf{L}$ and $\mathbf{v} \in \mathbf{L}^{\mathbf{k}-1}$

Recursive Solution

When is $\mathbf{w} \in \mathbf{L}^{\mathbf{k}}$?
$\mathrm{k}=0: \mathbf{w} \in \mathrm{L}^{\mathrm{k}}$ iff $\mathbf{w}=\boldsymbol{\epsilon}$
$\mathbf{k}=\mathbf{1}: \mathbf{w} \in \mathbf{L}^{\mathbf{k}}$ iff $\mathbf{w} \in \mathbf{L}$
$\mathbf{k}>\mathbf{1}: \mathbf{w} \in \mathbf{L}^{\mathbf{k}}$ if $\mathbf{w}=\mathbf{u v}$ with $\mathbf{u} \in \mathbf{L}$ and $\mathbf{v} \in \mathbf{L}^{\mathbf{k}-1}$
Assume \mathbf{w} is stored in array $\mathbf{A}[\mathbf{1 . . n}]$
IsStringinLk(A[1..n], k):
If ($\mathbf{k}=0$)
If ($\mathbf{n}=\mathbf{0}$) Output YES
Else Ouput NO
If ($\mathbf{k}=\mathbf{1}$)
Output IsStringinL(A[1..n])
Else

$$
\begin{aligned}
& \text { For }(\mathbf{i}=1 \text { to } \mathbf{n}-\mathbf{1}) \text { do } \\
& \text { If }\text { (IsStringinL(A[1..i]) and IsStringinLk(A[i+1..n], } k-1)) \\
& \text { Output YES }
\end{aligned}
$$

Output NO

Analysis

```
IsStringinLk(A[1..n], k):
    If (k = 0)
        If (n=0) Output YES
        Else Ouput NO
    If (k=1)
    Output IsStringinL(A[1..n])
    Else
        For (i=1 to n-1) do
        If (IsStringinL(A[1..i]) and IsStringinLk(A[i+1..n],k - 1))
        Output YES
```

Output NO

- How many distinct sub-problems are generated by IsStringinLk(A[1..n], k)?

Analysis

```
IsStringinLk(A[1..n], k):
    If (k = 0)
        If (n=0) Output YES
    Else Ouput NO
    If (k=1)
    Output IsStringinL(A[1..n])
    Else
        For (i=1 to n-1) do
        If (IsStringinL(A[1..i]) and IsStringinLk(A[i+1..n],k - 1))
        Output YES
```

Output NO

- How many distinct sub-problems are generated by IsStringinLk(A[1..n], k)? O(nk)

Analysis

```
IsStringinLk(A[1..n], k):
    If (k = 0)
        If (n=0) Output YES
        Else Ouput NO
    If (k=1)
    Output IsStringinL(A[1..n])
    Else
        For (i=1 to n-1) do
        If (IsStringinL(A[1..i]) and IsStringinLk(A[i+1..n],k - 1))
        Output YES
```

Output NO

- How many distinct sub-problems are generated by IsStringinLk(A[1..n], k)? O(nk)
- How much space?

Analysis

```
IsStringinLk(A[1..n], k):
    If (k = 0)
        If (n=0) Output YES
        Else Ouput NO
    If (k=1)
    Output IsStringinL(A[1..n])
    Else
        For (i=1 to n-1) do
        If (IsStringinL(A[1..i]) and IsStringinLk(A[i+1..n],k - 1))
        Output YES
```

Output NO

- How many distinct sub-problems are generated by IsStringinLk(A[1..n], k)? O(nk)
- How much space? $\mathbf{O}(\mathbf{n k})$ pause
- Running time?

Analysis

```
IsStringinLk(A[1..n], k):
    If (k = 0)
        If (n=0) Output YES
    Else Ouput NO
    If (k=1)
    Output IsStringinL(A[1..n])
    Else
        For (i=1 to n-1) do
        If (IsStringinL(A[1..i]) and IsStringinLk(A[i+1..n],k - 1))
        Output YES
```

Output NO

- How many distinct sub-problems are generated by IsStringinLk(A[1..n], k)? O(nk)
- How much space? $\mathbf{O}(\mathbf{n k})$ pause
- Running time? $\mathbf{O}\left(\mathbf{n}^{2} \mathbf{k}\right)$

Another variant

Question: What if we want to check if $\mathbf{w} \in \mathbf{L}^{\mathbf{i}}$ for some $\mathbf{0} \leq \mathbf{i} \leq \mathbf{k}$? That is, is $w \in \cup_{i=0}^{k} L^{i}$?

Exercise

Definition

A string is a palindrome if $\mathbf{w}=\mathbf{w}^{R}$. Examples: I, RACECAR, MALAYALAM, DOOFFOOD

Exercise

Definition

A string is a palindrome if $\mathbf{w}=\mathbf{w}^{R}$.
Examples: I, RACECAR, MALAYALAM, DOOFFOOD

Problem: Given a string w find the longest subsequence of \mathbf{w} that is a palindrome.

Example
MAHDYNAMICPROGRAMZLETMESHOWYOUTHEM has MHYMRORMYHM as a palindromic subsequence

Exercise

Assume \mathbf{w} is stored in an array $\mathbf{A}[1 . . n]$
$\operatorname{LPS}(\mathbf{A}[1 . . \mathrm{n}])$: length of longest palindromic subsequence of \mathbf{A}.
Recursive expression/code?

