
Turing Machines & 
Computability

Lecture 19
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Course Trajectory

Seen lots of algorithms, what can be done. 

But what cannot be done? 

Need a more precise definition of  
what a computer / computation is

2
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Most General Computer?
Not all functions are computable, but which are? 

Is there a most general model of computer, such 
that any “physically realizable” model of 

computation is subsumed by it?

3

Herbrand

Gödel

General Recursive Functions Lambda Calculus
Turing

Turing Machine
Church

All these models turned out to be equivalent!
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Our Model So Far
Not been very precise about our computational model so far 

Assumed that any integer and any array index fits into a 
“word”, and we can carry out arithmetic operations and  

load/store operations with them 

But that requires our CPU to be infinitely large! 

Does the model get too powerful?  

We do want to allow access to arbitrarily large amounts of 
memory (input maybe arbitrarily large), but without using 

arbitrarily long addresses…
4
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Solution

5
Sequential access
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Turing Machine

finite memory 
(state)

next-action 
look-up table

sequentially accessed 
infinite memoryread write

move the head  
left or right 
by one cell
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Initial configuration

a b c d e f g _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Turing Machine

next-action 
look-up table

input

qstart

blanks

next action: 
e.g.,  

δ(q, a) = (qʹ, b, R) 
change state to qʹ, 
write b in the cell 

scanned by head,  
move head Right
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Example

q2

q3

q4

q1

0 / 0ʹ, R 
1 / 1ʹ, R 

_ / _, L 

0 / 0, L 
1 / 1, L 

0ʹ / 0, R 

1ʹ / 1, R 

0 / 0, R 
1 / 1, R 

0 / 0, R 
1 / 1, R 

_ / 0, L 

_ / 1, L 

Input alphabet : Σ = {0,1}

Tape alphabet : Γ = {0,1,0ʹ, 1ʹ, _}

What does this TM do?
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0 0 1 _ _ _ _ _ _ _ _

Example
q1

0ʹ 0 1 _ _ _ _ _ _ _ _

0ʹ 0ʹ 1 _ _ _ _ _ _ _ _

0ʹ 0ʹ 1ʹ _ _ _ _ _ _ _ _

0ʹ 0ʹ 1ʹ _ _ _ _ _ _ _ _q2

0ʹ 0ʹ 1 _ _ _ _ _ _ _ _

0ʹ 0ʹ 1 1 _ _ _ _ _ _ _

0ʹ 0ʹ 1 1 _ _ _ _ _ _ _

0ʹ 0 1 1 _ _ _ _ _ _ _

q4

q2

0ʹ 0 1 1 _ _ _ _ _ _ _

0ʹ 0 1 1 _ _ _ _ _ _ _

0ʹ 0 1 1 0 _ _ _ _ _ _

0ʹ 0 1 1 0 _ _ _ _ _ _

0ʹ 0 1 1 0 _ _ _ _ _ _

q3

q2

0ʹ 0 1 1 0 _ _ _ _ _ _

Input alphabet : Σ = {0,1}

Tape alphabet : Γ = {0,1,0ʹ, 1ʹ, _}

q2

q3

q4

q1

0 / 0ʹ, R 
1 / 1ʹ, R 

_ / _, L 

0 / 0, L 
1 / 1, L 

0ʹ / 0, R 

1ʹ / 1, R 

0 / 0, R 
1 / 1, R 

0 / 0, R 
1 / 1, R 

_ / 0, L 

_ / 1, L 
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0 0 1 _ _ _ _ _ _ _ _

Example
q1

0ʹ 0 1 1 0 _ _ _ _ _ _

0 0 1 1 0 _ _ _ _ _ _

0 0 1 1 0 _ _ _ _ _ _

0 0 1 1 0 _ _ _ _ _ _

0 0 1 1 0 _ _ _ _ _ _

0 0 1 1 0 _ _ _ _ _ _

…

q2

q3

0 0 1 1 0 0 _ _ _ _ _q2

0 0 1 1 0 0 _ _ _ _ _

0 0 1 1 0 0 _ _ _ _ _

0 0 1 1 0 0 _ _ _ _ _

0 0 1 1 0 0 _ _ _ _ _

Maps w to wwR

Next?

Input alphabet : Σ = {0,1}

Tape alphabet : Γ = {0,1,0ʹ, 1ʹ, _}

q2

q3

q4

q1

0 / 0ʹ, R 
1 / 1ʹ, R 

_ / _, L 

0 / 0, L 
1 / 1, L 

0ʹ / 0, R 

1ʹ / 1, R 

0 / 0, R 
1 / 1, R 

0 / 0, R 
1 / 1, R 

_ / 0, L 

_ / 1, L 
Crashes! Head moves out of the tape.
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Example

Maps w to wwR

Input alphabet : Σ = {0,1}

Tape alphabet : Γ = {0,1,0ʹ, 1ʹ, _}

q2

q3

q4

q1

0 / 0ʹ, R 
1 / 1ʹ, R 

_ / _, L 

0 / 0, L 
1 / 1, L 

0ʹ / 0, R 

1ʹ / 1, R 

0 / 0, R 
1 / 1, R 

0 / 0, R 
1 / 1, R 

_ / 0, L 

_ / 1, L 

qstart
0 / 0ʹʹ, R 
1 / 1ʹʹ, R 

q5

q6

0 / 0, R 
1 / 1, R 

0 / 0, R 
1 / 1, R 

0ʹʹ/ 
0, R 

1ʹʹ/ 1, R 

qhalt

_ / 0, R 

_ / 1, R 

0ʹʹ, 1ʹʹ,_}
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TM for Decision Problems
M = (Q, Σ, Γ, B, δ, qstart,, qaccept, qreject): 

Q is a finite set of states 

Σ is a finite input alphabet 

Γ is a finite tape alphabet.  (Σ ⊆ Γ) 

B ∈ Γ – Σ is the blank symbol 

δ : Q × Γ → Q × Γ × { L, R }

qstart ∈ Q is the initial state 

qaccept, qreject ∈ Q accept/reject states
12

A TM could write its 
output on the tape and 
enter qhalt 

But for decision 
problems (when the 
output is required to be 
a bit, yes/no), for 
convenience, we use 
two halt states,  
qaccept and qreject
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TM for Decision Problems
M = (Q, Σ, Γ, B, δ, qstart,, qaccept, qreject): 

Q is a finite set of states 

Σ is a finite input alphabet 

Γ is a finite tape alphabet.  (Σ ⊆ Γ) 

B ∈ Γ – Σ is the blank symbol 

δ : Q × Γ → Q × Γ × { L, R }

qstart ∈ Q is the initial state 

qaccept, qreject ∈ Q accept/reject states
13

No  transition out of 
qaccept and qreject 

δ : Q \ {qaccept, qreject} × Γ   
           → Q × Γ × { L, R } 

Convention: for  (q, a) ∈ 
Q \ {qaccept, qreject} × Γ, if 
δ(q, a) is not specified, 
then define δ(q, a) to be 
(qreject,B,R)
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ID:  Instantaneous Description
Contains all necessary information to capture the  

“current configuration of the computation” 
 

state, tape-contents & head-location 

Easy-to-read notation: xqy 
 
 

Initial ID:  qstart ⟨input⟩
14

x ∈ Γ* : tape contents left of the head  
q ∈ Q  : state  
y ∈ Γ* : tape contents at & right of the head   
             (till last non-blank)
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Relations ⇒ & ⇒* on IDs

ID1 ⇒ ID2 iff ID1 evolves into ID2 in one step. 

e.g., if  δ(q, ai) = (qʹ,b, L), then 
a1 a2… ai-1 q ai ai+1… an   ⇒   a1 a2… ai-2 qʹai-1 b ai+1… an  

15

current ID next ID

⇒* is the reflexive & transitive closure of ⇒ 

Thus, ID1 ⇒* ID2 iff M, when run from ID1, reaches ID2 
after some finite number (0 or more) of moves
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Definition of Acceptance
M accepts w iff qstart w  ⇒*  α1 qaccept α2  

for some α1, α2  ∈ Γ* 

Note that M is allowed to accept w without scanning all of w 
 

L(M) = {w | M accepts w}

M does not accept w if starting from the ID qstart w : 
   1.  M halts in qreject, or 

2. M crashes (head moves off the tape), or  
3. M never stops

16
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Deciding/Recognizing a Language

L(M) = {w | M accepts w}

is called the language recognized by M 
  M decides L(M) if on input w ∉ L, M halts in qreject

If a TM decides the language it recognizes,  
then, on every input, it halts in qaccept or qreject 

Easy to change “crashes” to rejects  
 But turns out the we can’t avoid infinite 

executions! (can’t tell if it is going to be infinite)

17
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Deciding/Recognizing a Language

L(M) = {w | M accepts w}

is called the language recognized by M 
  M decides L(M) if on input w ∉ L, M halts in qreject

Fundamental questions of computability: 
Which languages are recognizable? 

Which languages are decidable?

18

Recursively 
Enumerable  
Language

Recursive  
Language
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Deciding/Recognizing a Language

Claim: If L  and L̅ are both recursively enumerable, 
then they are both decidable too 

Say L = L(M1) and L̅ = L(M2).

Can define a TM M which “simulates” M1 and M2  
in parallel on the same input.  

On any input, one of the simulated machines will 
eventually accept (and halt).  

M accepts or rejects accordingly.

19

How? M has only 
one tape…
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What a TM can do

A TM can do everything that can be done in a 
standard programming language 

(and vice versa) 

Coming up:  
A few programming tools for TMs and 

some equivalent models which are easier to 
program in

20
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Example

Idea: Read first symbol into finite memory.  
Then move the tape head to the first symbol from 

right, and compare with symbol in memory.  
If mismatch, reject. 

 
Else, return to the next symbol from left, read it into 

memory and compare with next symbol from right, etc. 
How does the TM know which symbol is the “next”?  
 Can’t use finite memory to keep track of how many 

positions already processed.  
Need to use the tape itself.

21

TM to accept palindromes in {0,1}*
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Example

22

TM to accept palindromes in {0,1}*

qstart

0 / _, R 

1 / _, R 

0 / 0, R 
1 / 1, R 

0 / 0, R 
1 / 1, R 

_ / _, L 
0 / _, L 0 / 0, L 

1 / 1, L 

_ / _, R 

_ / _, L 
1 / _, L 

qaccept
_ / _, R 

_ / _, R 

_ / _, R 

Fact: If TM not allowed to write on the tape,  
then can recognize only regular languages
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Avoiding Crashing

Given M (that may crash), an “equivalent” Mʹ  
which goes to qreject instead of crashing 

Idea: Rewrite input w to be $w, place the head on the 
first symbol of w and run M. If head ever scans $, 

move to qreject (and move the head right)

23

q0pstart 

p0 

p1 

p2 
0/$,R

1/$,R

0/0,R

1/1,R

1/0,R 0/1,R
$/$,R

0/0,L
1/1.L

_/_,L

_/_,L
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Shifting by k Positions
Can do “shift-by-1” k times. But k scans of tape. 

To shift by k positions to the right in a single scan: 
Remember last k symbols. Overwrite current cell 

with symbol from k cells behind

24

pstart 

p0 

p1 

0/$,R

1/$,R

$/$,R

0/0,L
1/1.L

p00 

p11

p01 

p10 

pʹ0 

pʹ1 

0/$,R

1/$,R

1/$,R

_/0,R

_/1
,R _/1,R

_/0,R

_/0,R

_/1,R

0/1,R

1/0,R

pʹʹ0 

pʹʹ1 

1/$,R _/1,R

_/0,R

_/$,R

_/$,R

1/1,R

0/0,R

1/0,R

0/1,R

0/
0,

R

1/
1,

R
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Binary Addition
L = { x#y#z | x, y, z ∈ {0,1}*, |x|=|y|=|z|, x+y=z in binary } 

Plan: 

25

0 1 # 0 1 # 1 0 _ _ _

$ 0 1 # 0 1 # 1 0 _ _

:

carry c=1$ 0 # @ 0 # @ 1 _ _ _

:

carry c=0$ # @ @ # @ @ _ _ _ _

:

shift

check LSB

check MSB

:

carry c=0

check finished
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Binary Addition
L = { x#y#z | x, y, z ∈ {0,1}*, |x|=|y|=|z|, x+y=z in binary } 

Shift input w to make it $w. 
Scan the tape to ensure w matches (0+1)*#(0+1)*#(0+1)*
Return head to the left end (right of $)   
(In finite memory, carry-bit c initialized to 0) 
Repeat 

copy the digit to the left of first # into finite state, and 
overwrite it with # (replace old # by @). If no digit there, 
accept if carry is 0 & no digits left; else reject. 

copy the digit to the left of second # into finite state, and 
move # left (replace old # by @). If no digit there, reject. 

check if the right most digit is “correct”. Reject if no digit 
or if it is not correct; else erase digit and update carry.  

Move head to the left end (right of $)
26
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27

q0

Shift  
& 

Format 
Check $/$,R

0 / 0, R 
1 / 1, R 

#/@, L 

0 / 0, R 
1 / 1, R 

#/@, L 0 /#,R 

@ / @, R 1 /#,R 

0 /#,R 

0 / 0, R 
1 / 1, R 

@ / @, R 

_/_, L 

@ / @, L 

0 / _, L 

0 / 0, L 
1 / 1, L 

# / #, L 

$/$,R

1 /#,R 
$/$,R

Verify finished  
& Accept

c=0

x=0

x=1

y=0

y=1

c=1
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Variants/Extensions

Adding more capabilities to TMs make them easier 
to program 

But doesn’t change what TMs can do:  
whatever the new variant can do, can be 

simulated in the original variant  
(with a lot more steps, sometimes)

28



CS
 3

74

Extension: 2-Way Infinite Tape

Simulating it in the original TM variant:  
 

Modify transitions:  
Remember in control if +ve or -ve side of tape  

(contents of 0 cell will be marked). 

If positive (>1): R → RR & L → LL 
If negative: R → LL & L → RR 

At 0: R → R & L → RR
29

. . -5 -4 -3 -2 -1 0 1 2 3 4 5 . .

0 1 -1 2 -2 3 -3 4 -4 5 -5 6 . . .
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Extension: Allowing Head to Stay

Suppose we allow the head movement to be in 
{L,R,S} (S for Stay) 

Can simulate “staying” in the original TM model with 
two moves (and double the number of states) 

If δ(q,a) = (p,b,S), then  
let δʹ(q,a) = (pʹ,b,R) and δʹ(pʹ,x) = (p,x,L) (for all x∈Γ)

30
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Extension: multiple tracks

31

0 1 1 0

$ 1 0 0 1

a b b c a a a

2

infinite tape !

M can address any particular track in the cell it is scanning

4 tracks

0

$

a

1

1

b

1

0

b

2

0

0

c

1

a a a

Can simulate multiple tracks with a single track 
machine, using extra “stacked” characters:

single new
character
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Extension: multiple tracks

32

0 1 1 0

$ 1 0 0 1

a b b c a a a

2

infinite tape !

M: δ(q, -,0,-,-) = (p, -,-,-,1, R)   

4 tracks

Then in  Mʹ  δ(q,     ) = (p,      , R) 
x

0

y

z

x

0

y

1

for every x, y, z ∈ Γ

“If in state q reading 0 on 
second track, then go to state 
p, write 1 on fourth track, and 
move right”
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Extension: multiple tapes
k-tape TM 

k different (2-way infinite) tapes 
k different independently controllable heads 

input initially on tape 1;  tapes 2, 3, ..., k, blank. 

Single move: 
read symbols under all heads 

print (possibly different) symbols under heads 
move all heads (possibly in different directions) 

go to new state
33
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k-tape TM transition function
δ(q,a1, a2,... ak) = (p, b1,b2, ... bk, D1, D2, ... Dk) 

34

Symbols scanned on 
the k different tapes

Symbols to be written 
on the k different tapes

Directions to be moved 
(Di is one of  L, R, S)

Utility of multiple tapes:  
makes programming a whole lot easier 

1 1 0 0 1 0 # 0 1 0 0 1 1

Example: L = {  w#wR | w ∈ {0,1}* }

1ʹ 1 0 0 1 0 #

With single tape, need Ω(n2) steps
With 2 tapes,  
n+1 steps:  
copy till # to  
2nd tape.  
Scan it 
backwards 
after that
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Canʹt compute more with k tapes 
Theorem:  If L is accepted by a k-tape TM M, then 

L is accepted by some 1-tape TM Mʹ.

35

Idea:  Mʹ uses k tracks to simulate tapes of M

BUT....
M has k heads!

How can Mʹ be in 
k places at once?

Mʹ will use 2k tracks to simulate tapes+heads of M


