Turing Machines \& Compulabiliky

Lecture 19

Course Trajectory

Seen lots of algorithms, what can be done.
But what cannot be done?
Need a more precise definition of what a computer / computation is

Most General Computer?

Not all functions are computable, but which are?
Is there a most general model of computer, such that any "physically realizable" model of computation is subsumed by it?

General Recursive Functions

Lambda Calculus

Turing Machine All these models turned out to be equivalent!

Our Model So Far

Not been very precise about our computational model so far
Assumed that any integer and any array index fits into a "word", and we can carry out arithmetic operations and load/store operations with them

But that requires our CPU to be infinitely large!
Does the model get too powerful?
We do want to allow access to arbitrarily large amounts of memory (input maybe arbitrarily large), but without using arbitrarily long addresses...

Solution

Sequential access

Turing Machine

move the head left or right by one cell

finite memory (state)

Turing Machine

input
blanks

next action:

Initial configuration

Example

Input alphabet : $\Sigma=\{0,1\}$
Tape alphabet : $\Gamma=\left\{0,1,0^{\prime}, 1^{\prime}, \ldots\right\}$
What does this TM do?

Example

Example

 Input alphabet : $\Sigma=\{0,1\}$ Tape alphabet : $\Gamma=\left\{0,1,0^{\prime}, 1^{\prime}, \ldots\right\}$ Maps w to $w w^{\mathrm{R}}$

0^{\prime}	0	1	1	0					
0	0	1	1	0					
0	0	1	1	0					
0	0	1	1	0					
0	0	1	1	0					
0	0	1	1	0					
0	0	1	1	0	0				
0	0	,	1	0	0				
0	0	1	1	0	0				
0	0	1	1	O	0				
0	0	1	1	0	0				

Next?

Crashes! Head moves out of the tape.

Example

Input alphabet : $\Sigma=\{0,1\}$

Tape alphabet : $\Gamma=\left\{0,1,0^{\prime}, 1^{\prime}, \mathbf{0}^{\prime \prime}, \mathbf{1}^{\prime \prime}, _\right\}$
Maps w to $w w^{R}$

$$
\begin{array}{ll}
0 / 0, R & \mathbf{0} / \mathbf{0 , R} \\
1 / 1, \mathrm{R} & \mathbf{1} / \mathbf{1}, \mathbf{R}
\end{array}
$$

TM for Decision Problems

$M=\left(Q, \Sigma, \Gamma, B, \delta, q_{\text {start, }} q_{\text {accept }} q_{\text {reject }}\right):$
Q is a finite set of states
Σ is a finite input alphabet
Γ is a finite tape alphabet. $(\Sigma \subseteq \Gamma)$
$B \in \Gamma-\Sigma$ is the blank symbol
$\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}$
$q_{\text {start }} \in Q$ is the initial state

A TM could write its output on the tape and enter $q_{\text {halt }}$

But for decision
problems (when the output is required to be a bit, yes/no), for convenience, we use two halt states,
$q_{\text {accept }}$ and $q_{\text {reject }}$
$q_{\text {accepi }}, q_{\text {reject }} \in Q$ accept/reject states

TM for Decision Problems

$M=\left(Q, \Sigma, \Gamma, B, \delta, q_{\text {start, }} q_{\text {accept }} q_{\text {reject }}\right):$
Q is a finite set of states
Σ is a finite input alphabet
Γ is a finite tape alphabet. $(\Sigma \subseteq \Gamma)$
$B \in \Gamma-\Sigma$ is the blank symbol
$\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}$
$q_{\text {start }} \in Q$ is the initial state

No transition out of $q_{\text {accept }}$ and $q_{\text {reject }}$
$\delta: Q \backslash\left\{q_{\text {accept }}, q_{\text {reject }}\right\} \times \Gamma$ $\rightarrow Q \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}$

Convention: for $(q, a) \in$ $Q \backslash\left\{q_{\text {accept }}, q_{\text {reject }}\right\} \times \Gamma$, if $\delta(q, a)$ is not specified, then define $\delta(q, a)$ to be $\left(q_{\text {reject }}, B, R\right)$

ID: Instantaneous Description

Contains all necessary information to capture the "current configuration of the computation"

state, tape-contents \& head-location

Easy-to-read notation: xqy

$$
\begin{aligned}
& x \in \Gamma^{*}: \text { tape contents left of the head } \\
& q \in Q: \text { state } \\
& y \in \Gamma^{*}: \text { tape contents at \& right of the head } \\
& \quad \begin{array}{l}
\text { (till last non-blank) }
\end{array}
\end{aligned}
$$

Initial ID: $q_{\text {start }}\langle$ input〉

Relations $\Rightarrow \& \Rightarrow^{*}$ on IDs

$I D_{1} \Rightarrow I D_{2}$ iff $I D_{1}$ evolves into $I D_{2}$ in one step.

$\Rightarrow *$ is the reflexive \& transitive closure of \Rightarrow
Thus, $\mathrm{ID}_{1} \Rightarrow * \mathrm{ID}_{2}$ iff M, when run from $I \mathrm{D}_{1}$, reaches ID_{2} after some finite number (0 or more) of moves

Definition of Acceptance

M accepts w iff $\quad q_{\text {start }} w \Rightarrow^{*} \alpha_{1} q_{\text {accept }} \alpha_{2}$ for some $\alpha_{1}, \alpha_{2} \in \Gamma^{*}$

Note that M is allowed to accept w without scanning all of w

$$
L(M)=\{w \mid M \text { accepts } w\}
$$

M does not accept w if starting from the ID $q_{\text {start }} w$:

1. M halts in q_{reject}, or
2. M crashes (head moves off the tape), or
3. M never stops

Deciding/Recognizing a Language

$$
L(M)=\{w \mid M \text { accepts } w\}
$$

is called the language recognized by M
M decides $L(M)$ if on input $w \notin L, M$ halts in $q_{\text {reject }}$
If a TM decides the language it recognizes, then, on every input, it halts in $q_{\text {accept }}$ or $q_{\text {reject }}$

Easy to change "crashes" to rejects
But turns out the we can't avoid infinite executions! (can't tell if it is going to be infinite)

Deciding/Recognizing a Language

$$
L(M)=\{w \mid M \text { accepts } w\}
$$

is called the language recognized by M
M decides $L(M)$ if on input $w \notin L, M$ halts in $q_{\text {reject }}$
Fundamental questions of computability:
Which languages are recognizable?
Recursively Enumerable Language

Recursive Language

Deciding/Recognizing a Language

Claim: If L and \bar{L} are both recursively enumerable, then they are both decidable too

$$
\text { Say } L=L\left(M_{1}\right) \text { and } \bar{L}=L\left(M_{2}\right) \text {. }
$$

Can define a TM M which "simulates" M_{1} and M_{2} in paralle/ on the samelinput.
On any input, one of the simulated machines will eventually accept (and halt). M accepts or rejects accordingly.

How? M has only one tape...

What a TM can do

A TM can do everything that can be done in a standard programming language (and vice versa)

Coming up:
A few programming tools for TMs and some equivalent models which are easier to program in

Example

TM to accept palindromes in $\{0,1\}^{*}$

Idea: Read first symbol into finite memory.
Then move the tape head to the first symbol from right, and compare with symbol in memory.

If mismatch, reject.
Else, return to the next symbol from left, read it into memory and compare with next symbol from right, etc.

How does the TM know which symbol is the "next"?
Can't use finite memory to keep track of how many positions already processed. Need to use the tape itself.

Example

TM to accept palindromes in $\{0,1\}^{*}$

Fact: If TM not allowed to write on the tape, then can recognize only regular languages

Avoiding Crashing

Given M (that may crash), an "equivalent" M^{\prime} which goes to $q_{\text {reject }}$ instead of crashing

Idea: Rewrite input w to be $\$ w$, place the head on the first symbol of w and run M. If head ever scans \$, move to q_{reject} (and move the head right)

Shifting by k Positions

Can do "shift-by-1" k times. But k scans of tape.
To shift by k positions to the right in a single scan: Remember last k symbols. Overwrite current cell with symbol from k cells behind

Binary Addition

$L=\left\{x \# y \# z\left|x, y, z \in\{0,1\}^{*},|x|=|y|=|z|, x+y=z\right.\right.$ in binary $\}$
Plan:

0	1	$\#$	0	1	$\#$	1	0	-	-	-

shift

check LSB

carry $c=1$
check MSB

check finished

Binary Addition

$L=\left\{x \# y \# z\left|x, y, z \in\{0,1\}^{*},|x|=|y|=|z|, x+y=z\right.\right.$ in binary $\}$
Shift input w to make it $\$ w$.
Scan the tape to ensure w matches $(0+1)^{*} \#(0+1) * \#(0+1)^{*}$
Return head to the left end (right of \$)
(In finite memory, carry-bit c initialized to 0)
Repeat
copy the digit to the left of first \# into finite state, and
overwrite it with \# (replace old \# by @). If no digit there, accept if carry is 0 \& no digits left; else reject.
copy the digit to the left of second \# into finite state, and
move \# left (replace old \# by @). If no digit there, reject. check if the right most digit is "correct". Reject if no digit or if it is not correct; else erase digit and update carry. Move head to the left end (right of \$)

Variants/Extensions

Adding more capabilities to TMs make them easier to program

But doesn't change what TMs can do: whatever the new variant can do, can be simulated in the original variant (with a lot more steps, sometimes)

Extension: 2-Way Infinite Tape

Simulating it in the original TM variant:

0	1	-1	2	-2	3	-3	4	-4	5	-5	6	\cdot	\cdot	\cdot

Modify transitions:
Remember in control if + ve or -ve side of tape (contents of 0 cell will be marked).

If positive (>1): $R \rightarrow R R \& L \rightarrow L L$ If negative: $R \rightarrow L L \& L \rightarrow R R$

At $0: R \rightarrow R \& L \rightarrow R R$

Extension: Allowing Head to Stay

Suppose we allow the head movement to be in \{L,R,S\} (S for Stay)

Can simulate "staying" in the original TM model with two moves (and double the number of states)

If $\delta(q, a)=(p, b, S)$, then
let $\delta^{\prime}(q, a)=\left(p^{\prime}, b, \mathrm{R}\right)$ and $\delta^{\prime}\left(p^{\prime}, x\right)=(p, x, \mathrm{~L})($ for all $x \in \Gamma)$

Extension: multiple tracks

4 tracks | 0 | 1 | 1 | 0 | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\$$ | 1 | 0 | 0 | 1 | | | | | |
| a | b | b | c | a | a | a | | | |
| | | 2 | | | | | | | | infinite tape \rightarrow

M can address any particular track in the cell it is scanning
Can simulate multiple tracks with a single track machine, using extra "stacked" characters:

Extension: multiple tracks

4 tracks

0	1	1	0						
$\$$	1	0	0	1					
a	b	b	c	a	a	a			
		2							

infinite tape \rightarrow

$$
M: \delta(q,-, 0,-,-)=(p,-,-,-, 1, \mathrm{R})
$$

"If in state q reading 0 on second track, then go to state p, write 1 on fourth track, and move right"

Then in $M^{\prime} \delta\left(q, \begin{array}{|c|}\hline \frac{\mathrm{x}}{0} \\ \hline \mathrm{y} \\ \hline \mathrm{z} \\ \hline\end{array}\right)=\left(p, \begin{array}{|c|}\hline \mathrm{x} \\ \hline 0 \\ \hline \mathrm{y} \\ \hline 1 \\ \hline\end{array}, \mathrm{R}\right) \quad$ for every $x, y, z \in \Gamma$

Extension: multiple tapes

k-tape TM

k different (2-way infinite) tapes
k different independently controllable heads input initially on tape 1 ; tapes $2,3, \ldots, k$, blank.

Single move:
read symbols under all heads print (possibly different) symbols under heads move all heads (possibly in different directions) go to new state

k-tape TM transition function

$$
\delta\left(q, a_{1}, a_{2}, \ldots a_{k}\right)=\left(p, b_{1}, b_{2}, \ldots b_{k}, D_{1}, D_{2}, \ldots D_{k}\right)
$$

Symbols scanned on the k different tapes

Symbols to be written on the k different tapes

Directions to be moved (D_{i} is one of L, R, S)

Utility of multiple tapes: makes programming a whole lot easier

Example: $L=\left\{w \# w^{\mathrm{R}} \mid w \in\{0,1\}^{*}\right\}$ With single tape, need $\Omega\left(n^{2}\right)$ steps

1	1	0	0	1	0	$\#$	0	1	0	0	1	1		
1^{\prime}	1	0	0	1	0	$\#$								

With 2 tapes, $n+1$ steps: copy till \# to $2^{\text {nd }}$ tape.
Scan it backwards after that

Can't compute more with k tapes

Theorem: If L is accepted by a k-tape TM M, then L is accepted by some 1-tape TM M^{\prime}. Idea: M^{\prime} uses k tracks to simulate tapes of M

BUT....

M has k heads!
How can M^{\prime} be in
k places at once?
M^{\prime} will use $2 k$ tracks to simulate tapes+heads of M

