Universal Turing Machine

Lecture 20

Turing Machine

move the head left or right by one cell

finite memory (state)

Variants don't change which languages are recognizable/decidable

Today

k-tape TM

Subroutines \& Recursion

Universal TM
Simulating a Random Access Machine
Church-Turing Thesis

Extension: multiple tapes

k-tape TM

k different (2-way infinite) tapes
k different independently controllable heads input initially on tape 1 ; tapes $2,3, \ldots, k$, blank.

Single move:
read symbols under all heads print (possibly different) symbols under heads move all heads (possibly in different directions) go to new state

k-tape TM transition function

$$
\delta\left(q, a_{1}, a_{2}, \ldots a_{k}\right)=\left(p, b_{1}, b_{2}, \ldots b_{k}, D_{1}, D_{2}, \ldots D_{k}\right)
$$

Symbols scanned on the k different tapes

Symbols to be written
Directions to move in on the k different tapes
(D_{i} is one of L, R, S)

Utility of multiple tapes: makes programming a whole lot easier

Example: $L=\left\{w \# w^{\mathrm{R}} \mid w \in\{0,1\}^{*}\right\}$ With single tape, need $\Omega\left(n^{2}\right)$ steps

1	1	0	0	1	0	$\#$	0	1	0	0	1	1		
1^{\prime}	1	0	0	1	0	$\#$								

With 2 tapes, $n+1$ steps: copy till \# to $2^{\text {nd }}$ tape.
Scan it backwards after that

Can't compute more with k tapes

Theorem: If L is accepted by a k-tape TM M, then L is accepted by some 1-tape TM M^{\prime}. Idea: M^{\prime} uses k tracks to simulate tapes of M

BUT....

M has k heads!
How can M^{\prime} be in
k places at once?
M^{\prime} will use $2 k$ tracks to simulate tapes+heads of M

Snapshot of simulation ($k=2$)

Single

move:

 $\delta\left(q_{1}, 1,1\right)$$=\left(q_{2}, 0,0, \mathrm{R}, \mathrm{L}\right)$

```
0}
```


Track $2 i$-1 holds tape i.

$\$$	0	0	1	1	0	1				
$\$$				\checkmark						
$\$$	0	1	1	1	0	1	0			
$\$$			\checkmark							

Track $2 i$ holds position
of head i

Snapshot of simulation ($k=2$)

Single
 move: $\delta\left(q_{1}, 1,1\right)$
$=\left(q_{2}, 0,0, \mathrm{R}, \mathrm{L}\right)$

$$
\begin{array}{l|l|l|l|l|l|l}
\hline 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array}
$$

M^{\prime} (a)

Make two sweeps over the tape (up to

$\$$	0	0	1	1	0	1				
$\$$				\checkmark						
$\$$	0	1	1	1	0	1	0			
$\$$			\checkmark							

Snapshot of simulation ($k=2$)

Single
 move:

$$
\begin{aligned}
& \delta\left(q_{1}, 1,1\right) \\
& =\left(q_{2}, 0,0, \mathrm{R}, \mathrm{~L}\right)
\end{aligned}
$$

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\hline
\end{array}
$$

First pass: record (old state,

$\$$	0	0	1	1	0	1				
$\$$				\checkmark						
$\$$	0	1	1	1	0	1	0			
$\$$			\checkmark							

Snapshot of simulation ($k=2$)

Single
 move: $\delta\left(q_{1}, 1,1\right)$
$=\left(q_{2}, 0,0, \mathrm{R}, \mathrm{L}\right)$

0	1	0	1	0	1	0

$\$$	0	0	1	1	0	1				
$\$$				\checkmark						
$\$$	0	1	1	1	0	1	0			
$\$$			\checkmark							

Snapshot of simulation ($k=2$)

Single move:
 $\delta\left(q_{1}, 1,1\right)$
$=\left(q_{2}, 0,0, \mathrm{R}, \mathrm{L}\right)$

0	1	0	1	0	1	0

Sweep back, implementing the changes

If M takes T steps, M^{\prime} takes $O\left(T^{2}\right)$ steps

Subroutine calls

Mechanism for M_{1} to "call" M_{2} on an argument
Goal: M_{1} calls from state $q_{\text {call }}$ returns to $q_{\text {return }}$
Rename start state of M_{2} as $q_{\text {call }}$ \& halt state $q_{\text {return }}$
M will have state space $Q=Q_{1} \cup Q_{2}$

$$
\left(Q_{1} \cap Q_{2}=\left\{q_{\text {call }}, q_{\text {return }}\right\}\right)
$$

Subroutine calls

M_{2} runs, and when done:

Subroutine calls

Mechanism for M_{1} to "call" M_{2} on an argument
Goal: M_{1} calls from state $q_{\text {call }}$ returns to $q_{\text {return }}$
Rename start state of M_{2} as $q_{\text {call }}$ \& halt state $q_{\text {return }}$
M will have state space $Q=Q_{1} \cup Q_{2}$

$$
\left(Q_{1} \cap Q_{2}=\left\{q_{\text {call }}, q_{\text {return }}\right\}\right)
$$

Recursion:

Now M_{2} can call itself (without adding more states). M_{1} may just be a wrapper ("main" function)

Alphabet Reduction

For any TM

$$
M=\left(Q, \Gamma, \Sigma, B, q_{\mathrm{start}}, q_{\mathrm{accept}}, q_{\mathrm{reject}}\right)
$$ there exists an "equivalent" TM

$$
\begin{aligned}
M^{\prime}= & \left(Q^{\prime}, \Gamma^{\prime}, \Sigma^{\prime}, B^{\prime}, q_{\text {start }}, q_{\text {accept },}, q_{\text {reject }}\right) \\
& \text { with } \Gamma^{\prime}=\Sigma^{\prime}=\{0,1\}, B^{\prime}=0
\end{aligned}
$$

Will need to encode input in Σ^{*} using $\{0,1\}$

$$
\text { Let } \Sigma=\{1,2, \ldots, d\}, \Gamma=\{0,1,2, \ldots, k-1\}(B=0)
$$

Encode $i \in \Gamma$ in binary using $\lceil\log k\rceil$ bits

Alphabet Reduction

Universal TM

So far: for each problem we design a new TM

Early Computer "Programming"

Rewire the computer!

Universal TM

Modern Computers: Program is just data

The computer's finite control remains the same, doing the following in a loop:

Read an instruction from the address in PC register Carry out that instruction (possibly reading from/ writing to other addresses)
Update the PC (as specified by the instruction)
The alphabet of the computer is also the same for all programs

Universal TM

Modern Computers: Program is just data Universal TM U :

Accepts as input $z \# w$
where z is interpreted as the description of a TM

$$
\text { (with } \Sigma=\Gamma=\{0,1\} \text {) }
$$

and w as an input to it
Simulates the execution of M_{z} on w : $U(z \# w)$ halts iff $M_{z}(w)$ halts $U(z \# w)$ accepts iff $M_{z}(w)$ accepts

Already saw: can be reduced to 1 tape and binary alphabet

Will use 3 tapes and a larger alphabet Γ_{U}

Universal TM

Given a string z, what is the $\mathrm{TM} M_{z}$?

$$
\begin{aligned}
& \text { For } M_{z} \text { we fix } \Sigma=\Gamma=\{0,1\} \text {, } \\
& q_{\text {start }}=0, q_{\mathrm{accept}}=1, q_{\mathrm{reject}}=2,
\end{aligned}
$$

Then z can just specify the transition function (which implicitly specifies Q as well)
e.g., z is of the form $\# 0^{h} 10^{i} 10^{j} 10^{k} 10^{d} \# \ldots$ indicating $\delta\left(q_{h}, i\right)=\left(q_{k}, j, \mathrm{D}_{d}\right)$ etc. with $d \in\{1,2\}$, and $\mathrm{D}_{1}=\mathrm{L}, \mathrm{D}_{2}=\mathrm{R}$
if z is not of this form, M_{z} is the "null TM" which rejects all inputs

Universal TM

1. Check syntax of z
2. Copy w to tape 2,
0 to tape 3
3. In a loop, until a halting state in tape 3: Scan tape 1 to find the correct transition, and update tapes $2 \& 3$.

A 3 tape Universal TM:

Tape of M_{z} (initialized to w). Head where M_{z} 's head is

State of M_{z}

Language of Universal TM

Language recognized by U :

$$
\begin{aligned}
L(U) & =\{z \# w \mid U \text { accepts } z \# w\} \\
& =\left\{z \# w \mid M_{z} \text { accepts } w\right\}
\end{aligned}
$$

Will later see:
$L(U)$ is undecidable!

A Higher－Level Model：RAM

RAM：Random Access Machine
A＂CPU＂that can directly access any location in an infinite array of integers，by specifying its address

CPU has a finite number of integer registers， including a＂program counter＂
（automatically incremented after each step）
Instructions written in the infinite memory
Load，〈Reg〉，〈addr〉 LoadI，〈Reg〉，〈addr〉

Store，〈Reg〉，〈addr〉 StoreI，〈Reg〉，〈addr〉
LoadC，〈Reg〉，〈num〉 Add，〈Reg〉，〈Reg〉
JmpZero，〈Reg〉，〈addr〉Halt

A Higher－Level Model：RAM

RAM：Random Access Machine Input follows code．Rest of memory has Os．

Program counter initialized to 1 and incremented after each step（unless overwritten by an instruction）

Realistic cost：Executing an instruction costs $\mathrm{O}(\log k)$ steps where k is max of absolute values of the integers in the instruction

Load，〈Reg〉，〈addr〉	LoadI，〈Reg〉，〈addr〉
Store，〈Reg〉，〈addr〉	StoreI，〈Reg〉，〈addr〉
LoadC，〈Reg〉，〈num〉	Add，〈Reg〉，〈Reg〉
Jmpzero，〈Reg〉，〈addr〉	Halt

TM simulating a RAM

Use a tape to hold the register contents, another to hold the memory (array) contents. Also an input tape \& work tape.

All integers are encoded in binary
Memory tape is a list of pairs (addr,val) for all the locations addressed by the RAM so far, +code+input locations. Initialized from code built into finite control, and input tape.

For each RAM step, our TM does the following:

- Scan the memory \& register tape and copy information for current instruction to the work tape.
- Compute changes to registers \& memory.
- Update the register \& memory tapes (shifting as necessary)

TM simulating a RAM

If RAM takes T time steps then the numbers accessed at any step are $O(T)$ bits long.
Our TM uses $O(T)$ tape cells and polynomial (T) time.
For this the (addr, val) representation of memory tape is important. If memory tape simulated the array contiguously, will incur exponential blow-up.

Church-Turing Thesis

A "central dogma" of Computer Science:
\mathfrak{A} T'M can simulate any "physically realizable" model of computation.

Remains true even with probabilistic computation and even quantum computation
(Open whether these models allow polynomial-time computation of problems which a TM cannot solve in polynomial-time)

