
Universal Turing Machine

Lecture 20

1

CS
 3

74

Turing Machine

finite memory
(state)

next-action
look-up table

sequentially accessed
infinite memoryread write

move the head  
left or right 
by one cell

Variants don’t change which languages  
are recognizable/decidable

CS
 3

74

Today

k-tape TM

Subroutines & Recursion

Universal TM

Simulating a Random Access Machine

Church-Turing Thesis

3

CS
 3

74

Extension: multiple tapes

k-tape TM
k different (2-way infinite) tapes

k different independently controllable heads
input initially on tape 1; tapes 2, 3, ..., k, blank.

Single move:
read symbols under all heads

print (possibly different) symbols under heads
move all heads (possibly in different directions)

go to new state
4

CS
 3

74

k-tape TM transition function
δ(q,a1, a2,... ak) = (p, b1,b2, ... bk, D1, D2, ... Dk)

5

Symbols scanned on
the k different tapes

Symbols to be written
on the k different tapes

Directions to move in  
(Di is one of L, R, S)

Utility of multiple tapes:  
makes programming a whole lot easier

1 1 0 0 1 0 # 0 1 0 0 1 1

Example: L = { w#wR | w ∈ {0,1}* }

1ʹ 1 0 0 1 0 #

With single tape, need Ω(n2) steps
With 2 tapes,
n+1 steps:  
copy till # to  
2nd tape.  
Scan it 
backwards 
after that

CS
 3

74

Canʹt compute more with k tapes
Theorem: If L is accepted by a k-tape TM M, then

L is accepted by some 1-tape TM Mʹ.

6

Idea: Mʹ uses k tracks to simulate tapes of M

BUT....
M has k heads!

How can Mʹ be in
k places at once?

Mʹ will use 2k tracks to simulate tapes+heads of M

CS
 3

74

Snapshot of simulation (k = 2)

7

0 0 1 1 0 1

0 1 1 1 0 1 0

M

head 1

head 2

Track 2i-1 holds tape i.
Track 2i holds position
of head i

q1

$ 0 0 1 1 0 1

$ ✓

$ 0 1 1 1 0 1 0

$ ✓

Mʹ

head

q1

Single 
move: 
δ(q1,1,1)  
 = (q2,0,0,R,L)

CS
 3

74

$ 0 0 1 1 0 1

$ ✓

$ 0 1 1 1 0 1 0

$ ✓

Snapshot of simulation (k = 2)

8

0 0 1 0 0 1

0 1 0 1 0 1 0

M

head 1

head 2

Mʹ
Make two sweeps  

over the tape (up to
the rightmost head)

Single 
move: 
δ(q1,1,1)  
 = (q2,0,0,R,L)

q2

head

q1

CS
 3

74

0 0 1 0 0 1

0 1 0 1 0 1 0

$ 0 0 1 1 0 1

$ ✓

$ 0 1 1 1 0 1 0

$ ✓

Snapshot of simulation (k = 2)

9

M

head 1

head 2

Mʹ
First pass: record  

(old state,  
head-1 symbol,  
head-2 symbol)

Single 
move: 
δ(q1,1,1)  
 = (q2,0,0,R,L)

q2

head

q1,1,1

CS
 3

74

0 0 1 0 0 1

0 1 0 1 0 1 0

$ 0 0 1 1 0 1

$ ✓

$ 0 1 1 1 0 1 0

$ ✓

Snapshot of simulation (k = 2)

10

M

head 1

head 2

Mʹ
Update state to  

record the changes  
to make

Single 
move: 
δ(q1,1,1)  
 = (q2,0,0,R,L)

q2

head

q2,0,0,R,L

CS
 3

74

0 0 1 0 0 1

0 1 0 1 0 1 0

Snapshot of simulation (k = 2)

11

M

head 1

head 2

$ 0 0 1 0 0 1

$ ✓

$ 0 1 0 1 0 1 0

$ ✓

Mʹ
Sweep back, 

implementing the
changes

Single 
move: 
δ(q1,1,1)  
 = (q2,0,0,R,L)

q2

head

q2

If M takes T steps, Mʹ takes O(T2) steps

CS
 3

74

Subroutine calls
Mechanism for M1 to “call” M2 on an argument

Goal: M1 calls from state qcall returns to qreturn

Rename start state of M2 as qcall & halt state qreturn

M will have state space Q = Q1∪Q2  
(Q1∩Q2 = {qcall, qreturn})

12

CS
 3

74

M2 runs, and when done:

13

. # a1 a2
. . an

M1 work space M2 work space:  
initially input to M2

. # b1 b2
. . . bk

M1 work space M2 returned value

qcall

qreturn

Subroutine calls

CS
 3

74

Subroutine calls
Mechanism for M1 to “call” M2 on an argument

Goal: M1 calls from state qcall returns to qreturn

Rename start state of M2 as qcall & halt state qreturn

M will have state space Q = Q1∪Q2  
(Q1∩Q2 = {qcall, qreturn})

14

Recursion:  
Now M2 can call itself (without adding more states).  

M1 may just be a wrapper (“main” function)

CS
 3

74

Alphabet Reduction
For any TM  

M = (Q,Γ,Σ,B,qstart,qaccept,qreject)  
there exists an "equivalent" TM  
Mʹ = (Qʹ,Γʹ,Σʹ,Bʹ,qstart,qaccept,qreject)  

with Γʹ=Σʹ={0,1}, Bʹ=0

Will need to encode input in Σ* using {0,1}

Let Σ = {1,2,…,d}, Γ = {0,1,2,…,k-1} (B=0)

Encode i ∈ Γ in binary using ⌈log k⌉ bits

n characters on M’s tape → O(n log k) bits for Mʹ15

CS
 3

74

Alphabet Reduction

16

A single step  
becomes  
O(log k) steps.

|Qʹ| = O(k log k ⋅|Q|)

p
0/3,L

q1 q41/2
,R

3/1,R

q2 q3

2/1,L

p

0/0,R

1/0,L

q1 q3 q4

0/1,L 1/0,R

q2

1/1/,R

0/1,L 1/1,L0/1,L

0/1,R 1/0,L

x/x,L x/x,Rx/x,R x/x.L

RE
AD

W
RI

TE
M

O
VE

CS
 3

74

Universal TM
So far: for each problem we design a new TM

Early Computer “Programming” 
 
 
 
 
 
 

Rewire the computer!
17

ENIAC

(1946-1955)

Programmers:

Kay McNulty,

Betty Jennings,

Betty Snyder,

Marlyn Wescoff,  
Fran Bilas, 

Ruth Lichterman

CS
 3

74

Universal TM

The computer’s finite control remains the same,
doing the following in a loop:

Read an instruction from the address in PC register  
Carry out that instruction (possibly reading from/
writing to other addresses) 
Update the PC (as specified by the instruction)

The alphabet of the computer is also the same for
all programs

18

Modern Computers: Program is just data

CS
 3

74

Universal TM

Universal TM U:

Accepts as input z#w 
where z is interpreted as the description of a TM 

(with Σ = Γ = {0,1})  
and w as an input to it

Simulates the execution of Mz on w: 
U(z#w) halts iff Mz(w) halts 

U(z#w) accepts iff Mz(w) accepts

Will use 3 tapes and a larger alphabet ΓU
19

Modern Computers: Program is just data

Already saw:
can be

reduced to 1
tape and

binary alphabet

CS
 3

74

Universal TM
Given a string z, what is the TM Mz ?

For Mz we fix Σ = Γ = {0,1},  
qstart = 0, qaccept = 1, qreject = 2,  

Then z can just specify the transition function 
(which implicitly specifies Q as well)

e.g., z is of the form # 0h 1 0i 1 0j 1 0k 1 0d #…  
indicating δ(qh,i) = (qk, j, Dd) etc.  
with d ∈ {1,2}, and D1=L, D2=R

if z is not of this form, Mz is the “null TM”  
which rejects all inputs

20

CS
 3

74

Universal TM
A 3 tape Universal TM:

21

1 0 1 0 _ _ _ _ _ _ _

z#w

Tape of Mz  
(initialized to w).

State of Mz

Head where Mz’s  
head is

. # 1 0 0 _

0 0 1 1 _ _ _ _ _ _ _

1. Check
syntax of z

2. Copy  
w to tape 2,  
0 to tape 3

3. In a loop,
until a halting
state in tape 3: 
Scan tape 1 to
find the correct
transition,  
and update  
tapes 2 & 3.

CS
 3

74

Language of Universal TM
Language recognized by U:

L(U) = { z#w | U accepts z#w } 
 = { z#w | Mz accepts w }

Will later see:

L(U) is undecidable!

22

CS
 3

74

A Higher-Level Model: RAM

A “CPU” that can directly access any location in an
infinite array of integers, by specifying its address

CPU has a finite number of integer registers,  
including a “program counter”  

(automatically incremented after each step)
Instructions written in the infinite memory

23

RAM: Random Access Machine

Load, ⟨Reg⟩, ⟨addr⟩ LoadI, ⟨Reg⟩, ⟨addr⟩

Store, ⟨Reg⟩, ⟨addr⟩ StoreI, ⟨Reg⟩, ⟨addr⟩

LoadC, ⟨Reg⟩, ⟨num⟩ Add, ⟨Reg⟩, ⟨Reg⟩

JmpZero, ⟨Reg⟩, ⟨addr⟩ Halt

CS
 3

74

A Higher-Level Model: RAM

Input follows code. Rest of memory has 0s.
Program counter initialized to 1 and incremented after

each step (unless overwritten by an instruction)
Realistic cost: Executing an instruction costs O(log k)

steps where k is max of absolute values of the integers
in the instruction

24

RAM: Random Access Machine

Load, ⟨Reg⟩, ⟨addr⟩ LoadI, ⟨Reg⟩, ⟨addr⟩

Store, ⟨Reg⟩, ⟨addr⟩ StoreI, ⟨Reg⟩, ⟨addr⟩

LoadC, ⟨Reg⟩, ⟨num⟩ Add, ⟨Reg⟩, ⟨Reg⟩

JmpZero, ⟨Reg⟩, ⟨addr⟩ Halt

CS
 3

74

TM simulating a RAM
Use a tape to hold the register contents, another to hold the
memory (array) contents. Also an input tape & work tape.

All integers are encoded in binary

Memory tape is a list of pairs (addr,val) for all the locations
addressed by the RAM so far, +code+input locations.

Initialized from code built into finite control, and input tape.

For each RAM step, our TM does the following:  
- Scan the memory & register tape and copy information for  
 current instruction to the work tape.  
- Compute changes to registers & memory.  
- Update the register & memory tapes (shifting as necessary)

25

CS
 3

74

TM simulating a RAM

If RAM takes T time steps then the numbers
accessed at any step are O(T) bits long. 

Our TM uses O(T) tape cells and polynomial(T) time.

For this the (addr,val) representation of memory tape
is important. If memory tape simulated the array

contiguously, will incur exponential blow-up.

26

CS
 3

74

Church-Turing Thesis
A “central dogma” of Computer Science:  

 
 
 

Remains true even with probabilistic computation
and even quantum computation

(Open whether these models allow polynomial-time computation
of problems which a TM cannot solve in polynomial-time)

27

A TM can simulate any “physically realizable”  
model of computation.

