
Universal Turing Machine

Lecture 20
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Turing Machine

finite memory 
(state)

next-action 
look-up table

sequentially accessed 
infinite memoryread write

move the head  
left or right 
by one cell

Variants don’t change which languages  
are recognizable/decidable
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Today

k-tape TM  

Subroutines & Recursion 

Universal TM  

Simulating a Random Access Machine 

Church-Turing Thesis
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Extension: multiple tapes

k-tape TM 
k different (2-way infinite) tapes 

k different independently controllable heads 
input initially on tape 1;  tapes 2, 3, ..., k, blank. 

Single move: 
read symbols under all heads 

print (possibly different) symbols under heads 
move all heads (possibly in different directions) 

go to new state
4
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k-tape TM transition function
δ(q,a1, a2,... ak) = (p, b1,b2, ... bk, D1, D2, ... Dk) 

5

Symbols scanned on 
the k different tapes

Symbols to be written 
on the k different tapes

Directions to move in  
(Di is one of  L, R, S)

Utility of multiple tapes:  
makes programming a whole lot easier 

1 1 0 0 1 0 # 0 1 0 0 1 1

Example: L = {  w#wR | w ∈ {0,1}* }

1ʹ 1 0 0 1 0 #

With single tape, need Ω(n2) steps
With 2 tapes,  
n+1 steps:  
copy till # to  
2nd tape.  
Scan it 
backwards 
after that
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Canʹt compute more with k tapes 
Theorem:  If L is accepted by a k-tape TM M, then 

L is accepted by some 1-tape TM Mʹ.

6

Idea:  Mʹ uses k tracks to simulate tapes of M

BUT....
M has k heads!

How can Mʹ be in 
k places at once?

Mʹ will use 2k tracks to simulate tapes+heads of M
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Snapshot of simulation  (k = 2)
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0 0 1 1 0 1

0 1 1 1 0 1 0

M

head 1

head 2

Track 2i-1 holds tape i.    
Track 2i holds position 
of head i

q1

$ 0 0 1 1 0 1

$ ✓

$ 0 1 1 1 0 1 0

$ ✓

Mʹ

head

q1

Single 
move: 
δ(q1,1,1)  
 = (q2,0,0,R,L)
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$ 0 0 1 1 0 1

$ ✓

$ 0 1 1 1 0 1 0

$ ✓

Snapshot of simulation  (k = 2)
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0 0 1 0 0 1

0 1 0 1 0 1 0

M

head 1

head 2

Mʹ
Make two sweeps  

over the tape (up to 
the rightmost head)

Single 
move: 
δ(q1,1,1)  
 = (q2,0,0,R,L)

q2

head

q1
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0 0 1 0 0 1

0 1 0 1 0 1 0

$ 0 0 1 1 0 1

$ ✓

$ 0 1 1 1 0 1 0

$ ✓

Snapshot of simulation  (k = 2)
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M

head 1

head 2

Mʹ
First pass: record  

(old state,  
head-1 symbol,  
head-2 symbol)

Single 
move: 
δ(q1,1,1)  
 = (q2,0,0,R,L)

q2

head

q1,1,1
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0 0 1 0 0 1

0 1 0 1 0 1 0

$ 0 0 1 1 0 1

$ ✓

$ 0 1 1 1 0 1 0

$ ✓

Snapshot of simulation  (k = 2)
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M

head 1

head 2

Mʹ
Update state to  

record the changes  
to make

Single 
move: 
δ(q1,1,1)  
 = (q2,0,0,R,L)

q2

head

q2,0,0,R,L
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0 0 1 0 0 1

0 1 0 1 0 1 0

Snapshot of simulation  (k = 2)
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M

head 1

head 2

$ 0 0 1 0 0 1

$ ✓

$ 0 1 0 1 0 1 0

$ ✓

Mʹ
Sweep back, 

implementing the 
changes

Single 
move: 
δ(q1,1,1)  
 = (q2,0,0,R,L)

q2

head

q2

If M takes T steps, Mʹ takes O(T2) steps
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Subroutine calls
Mechanism for M1 to “call” M2 on an argument 

Goal:  M1 calls from state qcall returns to qreturn 

Rename start state of M2 as qcall & halt state qreturn 

M will have state space Q = Q1∪Q2  
(Q1∩Q2 = {qcall, qreturn})

12
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M2 runs, and when done:

13

. . . . . . . . # a1 a2
. . an

M1 work space M2 work space:  
initially input to M2

. . . . . . . . # b1 b2
. . . bk

M1 work space M2 returned value

qcall

qreturn

Subroutine calls
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Subroutine calls
Mechanism for M1 to “call” M2 on an argument 

Goal:  M1 calls from state qcall returns to qreturn 

Rename start state of M2 as qcall & halt state qreturn 

M will have state space Q = Q1∪Q2  
(Q1∩Q2 = {qcall, qreturn})

14

Recursion:  
Now M2 can call itself (without adding more states).  

M1 may just be a wrapper (“main” function)
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Alphabet Reduction
For any TM  

M = (Q,Γ,Σ,B,qstart,qaccept,qreject)  
there exists an "equivalent" TM   
Mʹ = (Qʹ,Γʹ,Σʹ,Bʹ,qstart,qaccept,qreject)  

with Γʹ=Σʹ={0,1}, Bʹ=0 

Will need to encode input in Σ* using {0,1} 

Let Σ = {1,2,…,d}, Γ = {0,1,2,…,k-1} (B=0) 

Encode i ∈ Γ in binary using ⌈log k⌉ bits 

n characters on M’s tape →  O(n log k) bits for Mʹ15
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Alphabet Reduction

16

A single step  
becomes  
O( log k ) steps.

|Qʹ| = O(k log k ⋅|Q|)

p 
0/3,L

q1 q41/2
,R

3/1,R

q2 q3

2/1,L

p 

0/0,R

1/0,L

q1 q3 q4

0/1,L 1/0,R

q2

1/1/,R

0/1,L 1/1,L0/1,L

0/1,R 1/0,L

x/x,L x/x,Rx/x,R x/x.L

RE
AD

W
RI

TE
M

O
VE
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Universal TM 
So far: for each problem we design a new TM 

Early Computer “Programming” 
 
 
 
 
 
 

Rewire the computer!
17

ENIAC 

(1946-1955) 

Programmers: 

Kay McNulty, 

Betty Jennings, 

Betty Snyder, 

Marlyn Wescoff,  
Fran Bilas, 

Ruth Lichterman
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Universal TM 

The computer’s finite control remains the same, 
doing the following in a loop: 

Read an instruction from the address in PC register  
Carry out that instruction (possibly reading from/
writing to other addresses) 
Update the PC (as specified by the instruction) 

The alphabet of the computer is also the same for 
all programs

18

Modern Computers: Program is just data 
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Universal TM 

Universal TM U: 

Accepts as input z#w 
where z is interpreted as the description of a TM 

(with Σ = Γ = {0,1})  
and w as an input to it 

Simulates the execution of Mz on w: 
U(z#w) halts iff Mz(w) halts 

U(z#w) accepts iff Mz(w) accepts 

Will use 3 tapes and a larger alphabet ΓU 
19

Modern Computers: Program is just data 

Already saw: 
can be 

reduced to 1 
tape and 

binary alphabet
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Universal TM 
Given a string z, what is the TM Mz ? 

For Mz we fix Σ  = Γ = {0,1},  
qstart = 0, qaccept = 1, qreject = 2,   

Then z can just specify the transition function 
(which implicitly specifies Q as well) 

e.g., z is of the form # 0h 1 0i 1 0j 1 0k 1 0d #…  
indicating δ(qh,i) = (qk, j, Dd) etc.  
with d ∈ {1,2}, and D1=L, D2=R

if z is not of this form, Mz  is the “null TM”  
which rejects all inputs

20



CS
 3

74

Universal TM 
A 3 tape Universal TM:

21

1 0 1 0 _ _ _ _ _ _ _

z#w

Tape of Mz  
(initialized to w).

State of Mz

Head where Mz’s  
head is

. . . . . . # 1 0 0 _

0 0 1 1 _ _ _ _ _ _ _

1. Check 
syntax of z 

2. Copy  
w to tape 2,  
0 to tape 3 

3. In a loop, 
until a halting 
state in tape 3: 
Scan tape 1 to 
find the correct 
transition,  
and update  
tapes 2 & 3. 
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Language of Universal TM 
Language recognized by U: 

L(U) = { z#w | U accepts z#w } 
       = { z#w | Mz accepts w }

Will later see: 

L(U) is undecidable!

22
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A Higher-Level Model: RAM

A “CPU” that can directly access any location in an 
infinite array of integers, by specifying its address 

CPU has a finite number of integer registers,  
including a “program counter”  

(automatically incremented after each step) 
Instructions written in the infinite memory

23

RAM: Random Access Machine

Load, ⟨Reg⟩, ⟨addr⟩ LoadI, ⟨Reg⟩, ⟨addr⟩

Store, ⟨Reg⟩, ⟨addr⟩ StoreI, ⟨Reg⟩, ⟨addr⟩

LoadC, ⟨Reg⟩, ⟨num⟩ Add, ⟨Reg⟩, ⟨Reg⟩

JmpZero, ⟨Reg⟩, ⟨addr⟩ Halt
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A Higher-Level Model: RAM

Input follows code. Rest of memory has 0s.  
Program counter initialized to 1 and incremented after 

each step (unless overwritten by an instruction) 
Realistic cost: Executing an instruction costs O(log k) 

steps where k is max of absolute values of the integers 
in the instruction 

24

RAM: Random Access Machine

Load, ⟨Reg⟩, ⟨addr⟩ LoadI, ⟨Reg⟩, ⟨addr⟩

Store, ⟨Reg⟩, ⟨addr⟩ StoreI, ⟨Reg⟩, ⟨addr⟩

LoadC, ⟨Reg⟩, ⟨num⟩ Add, ⟨Reg⟩, ⟨Reg⟩

JmpZero, ⟨Reg⟩, ⟨addr⟩ Halt



CS
 3

74

TM simulating a RAM
Use a tape to hold the register contents, another to hold the 
memory (array) contents. Also an input tape & work tape. 

All integers are encoded in binary 

Memory tape is a list of pairs (addr,val) for all the locations 
addressed by the RAM so far, +code+input locations. 

Initialized from code built into finite control, and input tape. 

For each RAM step, our TM does the following:  
- Scan the memory & register tape and copy information for    
      current instruction to the work tape.  
- Compute changes to registers & memory.  
- Update the register & memory tapes (shifting as necessary)

25
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TM simulating a RAM

If RAM takes T time steps then the numbers 
accessed at any step are O(T) bits long. 

Our TM uses O(T) tape cells and polynomial(T) time. 

For this the (addr,val) representation of memory tape 
is important. If memory tape simulated the array 

contiguously, will incur exponential blow-up.

26
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Church-Turing Thesis
A “central dogma” of Computer Science:  

 
 
 

Remains true even with probabilistic computation 
and even quantum computation 

(Open whether these models allow polynomial-time computation 
of problems which a TM cannot solve in polynomial-time)

27

A TM can simulate any “physically realizable”  
model of computation.


