Undecidability and Rice's Theorem

Lecture 26, December 3

CS 374, Fall 2015

Recap: Universal TM U

We saw a TM U such that

$$
L(U)=\left\{(z, w) \mid M_{z} \text { accepts } w\right\}
$$

Thus, U is a stored-program computer.
It reads a program z and executes it on data w
$L(U)=\left\{(z, w) \mid M_{z}\right.$ accepts $\left.w\right\}$ is r.e.

Recap: Universal TM U

$L(U)=\left\{(z, w) \mid M_{z}\right.$ accepts $\left.w\right\}$ is r.e.

We proved the following:
Theorem: $L(U)$ is undecidable (i.e, not recursive)

No "algorithm" for L(U)

Polytime Reductions

$X \leq_{p} Y$ " X reduces to Y in polytime"

X-solver (polytime)

If Y can be decided in poly time, then X can be decided in poly time If X can't be decided in poly time, then Y can't be decided in poly time

Polytime Reductions

$X \leq Y$ " X reduces to Y in polytime"

X-solver f(polytime)

If Y can be decided inpolytime, then X can be decided in polytime If X can't be decided inpoly time, then Y can't be decided in poly time

Reduction

$X \leq Y$ " X reduces to Y "

If Y can be decided, then X can be decided.
If X can't be decided, then Y can't be decided

Halting Problem

- Does given M halt when run on blank input?
- HALT $=\left\{z \mid M_{z}\right.$ halts when run on blank input $\}$
- Show HALT is undecidable by showing $L(U) \leq$ HALT

L(U)-decider

What are input and output of the reduction?

$L(U) \leq H A L T$

$L(U)$-decider

Need: $M_{z^{\prime}}$ halts on blank inputiff M_{z} accepts w
$\underline{\mathrm{TM} M_{z^{\prime}}}$
const z
const w
run M_{z} on w and halt if it accepts
otherwise run for ever

$L(U) \leq H A L T$

L(U)-decider

Need: $M_{z^{\prime}}$ halts on blank inputiff M_{z} accepts w
TM $M_{z^{\prime}}$
const z
const w
run M_{z} on w and halt if it accepts
Correctness: L(U)-decider say "yes" iff $M_{z^{\prime}}$ halts on blank input iff M_{z} accepts w
iff (z, w) is in $L(U)$

Who cares about halting TMs?

- Remember, TMs = programs
- Virtually all math conjectures can be expressed as a halting-TM question.

Example: Goldbach's conjecture:
Every even number >2 is the sum of two primes.

Program Goldbach

goldbach()

$$
\mathrm{n}=4
$$

WHILE is-sum-of-two-primes(n)

$$
n=n+2
$$

STOP AND SAY NO
is-sum-of-two-primes(n): boolean
FOR $p \leq q<n$
If p, q, prime AND $\mathrm{p}+\mathrm{q}=\mathrm{n}$ then return true RETURN FALSE

Deciding mathematical truth

prove-theorem(T)
$\mathrm{w}=$ " "
WHILE NOT is-a-proof-of (w,T)
w = lexicographically-next-string(w)

OUTPUT T + "is true"
prove-theorem(T) halts iff there is a proof of T.

CS 125 assignment:

- Write a program that outputs "Hello world".

```
main()
{ print("Hello world");
}
```

- Can we write an auto-grader?
- If so; we can solve Goldbach's conjecture...

goldbach()
 $\mathrm{n}=4$

WHILE is-sum-of-two-primes(n) $\mathrm{n}=\mathrm{n}+2$

STOP and say NO
is-sum-of-two-primes(n): boolean FOR $p \leq q<n$

If p, q, prime AND $\mathrm{p}+\mathrm{q}=\mathrm{n}$
then return true
RETURN FALSE
main()
\{ goldbach(); printf("Hello world"); \}

Deciding halting problem

- Given string z, to determine if program M_{z} halts, do the following:

So, deciding if a program
prints "Hello world" is
solving the halting problem
main()
\{ $M_{z}()$
printf("Hello world");
$\}$

CORRECT
AUTOGRADER
INCORRECT
Using same ideas, we can
show that deciding
anything about code behavior is not possible

More reductions about languages

- We'll show other languages involving program behavior are undecidable:
- $L_{374}=\left\{<M>\mid L(M)=\left\{0^{374}\right\}\right\}$
- $L_{\neq \varnothing}=\{<M>\mid L(M)$ is nonempty $\}$
- $L_{\text {pal }}=\{<M>\mid L(M)=$ palindromes $\}$
- many many others

$$
L_{374}=\left\{z \mid L\left(M_{z}\right)=\left\{0^{374}\right\}\right\} \text { is undecidable }
$$

- Given a TM M, telling whether it accepts only the string 0^{374} is not possible
- Proved by showing $H A L T \leq L_{374}$ $\frac{z}{\text { instance of HALT }} \xrightarrow{\text { REDUCTION: EUILD } z^{\prime}} \frac{z^{\prime}=}{\text { instance oft }_{3 \text { 3/ }}}$ What is $L\left(M_{z^{\prime}}\right)$?
- If M_{z} halts, $L\left(M_{z^{\prime}}\right)=$ $\left\{0^{374}\right\}$
- If M_{z} doesn't $L\left(M_{z^{\prime}}\right)=$ \varnothing
$M_{z^{\prime}}$: constant: z

On input x,
0. if $x \neq 0^{374}$, reject

1. if $x=0^{374}$, then
2. run M_{z} accept x iff M_{z} halts

Q: How does the reduction know whether or not M_{z} halts ? A: It doesn't have to. It just builds (code for) $M_{z^{\prime}}$
$\operatorname{main}()$
$\{$
read input X
run $M_{z}()$
if $(x=0374$
$a \operatorname{coph} y$
clse accupt
ugidt

If there is a decider M_{374} to tell if a TM accepts the language $\left\{0^{374}\right\} \ldots$

Since HALT is not decidable, M_{374} doesn't exist, and L_{374} is undecidable
$L_{\neq \varnothing}=\{\stackrel{z}{\{\&} \mid L(M)$ is nonempty $\}$ is undecidable

- Given a TM M, telling whether it accepts any string is undecidable
- Proved by showing $H A L T \leq L_{\neq \emptyset}$

We want $M_{z^{\prime}}$, to satisfy:
- If M_{z} halts, $L\left(M_{z^{\prime}}\right)$
$\neq \varnothing$
- If M_{z} doesn't $L\left(M_{z^{\prime}}\right)=\varnothing$
$M_{z^{\prime}}$: constant: z Run M_{z} Accept x if M_{z} halts

If M_{z} halts, $L\left(M_{z^{\prime}}\right)=\Sigma^{*}$ hence $\neq \varnothing$
If M_{z} doesn't, $L\left(M_{z^{\prime}}\right)=\varnothing$

$$
L_{p a l}=\left\{z \mid L\left(M_{z}\right)=\text { palindromes }\right\} \text { is undecidable }
$$

- Given a TM M, telling whether it accepts the set of palindromes is undecidable
- Proved by showing $H A L T \leq L_{p a l}$

$\underline{z} \xrightarrow{\text { REDUCTION: BUILD } z^{\prime}} \xrightarrow{z^{\prime}}=$		$M_{z^{\prime}}$: constant: z On input x,
	instance of $L_{\text {pol }}$	
We want $M_{z^{\prime}}$ to satisfy:	$\underline{\square}$	Run M_{z}
- If M_{z} halts, $L\left(M_{z^{\prime}}\right)$	= \{palindromes $\}$	
- If M_{z} doesn't $L\left(M_{z^{\prime}}\right)$	\# \{palindromes\}	x is a palindrome

Lots of undecidable problems about languages accepted by programs

- Given M, is $L(M)=$ \{palindromes $\}$?
- Given M, is $L(M) \neq \varnothing$?
- Given M, is $L(M)=\left\{0^{374}\right.$
- Given M, is $L(M)$
- Given M Cry prime?
- Giv (V) meet these formal specs? aoes $L(M)=\Sigma^{*}$?

Rice's Theorem

- Q: What can we decide about the languages accepted by programs?

$$
\text { A: } \underset{\substack{\text { except trivival" things }}}{\text { NOTHING! }}
$$

Properties of r.e. languages

- A Property of r.e. languages is a predicate P of r.e. languages.

$$
\text { i.e., } P:\{L \mid L \text { is r.e. }\} \rightarrow\{\text { true, false }\}
$$

Important: we are only interested in r.e languages

- Examples:
- $P(L)=$ " L contains $0^{374 "}$
- $P(L)=$ " L contains at least 5 strings"
- $P(L)=$ " L is empty"
- $P(L)=" L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ "

Properties of r.e. languages

- A Property of r.e. languages is a predicate P of r.e. languages.

$$
\text { i.e., } P:\{L \mid L \text { is r.e. }\} \rightarrow\{\text { true, false }\}
$$

$L=L(M)$ for some $T M$ iff L is r.e by definition.

- We will thus think of a Property of r.e. languages as a set $\left\{z \mid L\left(M_{z}\right)\right.$ satisfies predicate $\left.P\right\}$
- Note that each property P is thus a set of strings $L(P)=\left\{z \mid L\left(M_{z}\right)\right.$ satisfies predicate $\left.P\right\}$
- Question: For which P is $L(P)$ decidable?

Trivial Properties

- A property is trivial if either all r.e. languages satisfy it, or no r.e. languages satisfy it.
- $\left\{z \mid L\left(M_{z}\right)\right.$ is r.e\}.... why is this "trivial" ?
- EVERY language accepted by an M is r.e. by def'n
- $\left\{z \mid L\left(M_{z}\right)\right.$ is not r.e\}.... why is this "trivial" ?
- $\left\{z \mid L\left(M_{z}\right)=\varnothing\right.$ or $\left.L\left(M_{z}\right) \neq \varnothing\right\}$.... why "trivial"?
- Clearly, trivial properties are decidable
- Because if P is trivial then $L(P)=\varnothing$ or $L(P)=\Sigma^{*}$

Rice's Theorem

Every nontrivial property of r.e. languages is undecidable

So, there is virtually nothing we can decide about behavior (language accepted) by programs

Example: auto-graders don't exist (if submissions are allowed to run an arbitrary (but finite) amount of time).

Proof

- Let P be a non-trivial property
- Let $L(P)=\left\{z \mid L\left(M_{z}\right)\right.$ satisfies predicate $\left.P\right\}$
- Show $L(P)$ is undecidable
- Assume \varnothing does not satisfy P
- Assume $L\left(M_{P-s a t}\right)$ satisfies P for some TM $M_{P-s a t}$

There must be at least one such TM (why?)

If there is a decider M_{p} to tell if a $T M$ accepts a language satisfying P...

What about assumption

- We assumed \varnothing does not satisfy P
- What if \varnothing does satisfy P ?
- Then consider
$L\left(P^{\prime}\right)=\{\langle M>| L(M)$ doesn't satisfy predicate $P\}$
- Then \varnothing isn't in $L\left(P^{\prime}\right)$
- Show $L\left(P^{\prime}\right)$ is undecidable
- So $L(P)$ isn't either (by closure under complement)

Properties of r.e Languages are Not properties of programs/TMs

- P is defined on languages, not the machines which might accept them.
- $\{<M>\mid M$ at some point moves its head left $\}$ is a property of the machine behavior, not the language accepted.
- \{<A.py> | program A has 374 lines of code\}
- \{<A.py> | A accepts "Hello World"\} this really is a predicate on $L(A)$

Properties about TMs

- sometimes decidable:
$-\left\{z \mid M_{z}\right.$ has 374 states $\}$
$-\left\{z \mid M_{z}\right.$ uses ≤ 374 tape cells on blank input $\}$
- $374 \times|\Gamma|^{32} \times\left|Q_{M}\right|$
$-\left\{z \mid M_{z}\right.$ never moves head to left $\}$
- sometimes undecidable
- $\left\{z \mid M_{z}\right.$ halts on blank input $\}$
$-\left\{z \mid M_{z}\right.$, on input " 0110 ", eventually writes " 2 " $\}$

Today

- Quick recap - halting \& undecidability
- Undecidability via reductions
- Rice's theorem
- ICES
- pick up TWO forms (Chandra + Manoj)
- return to same location

Final Thoughts

Theory of Computation and Algorithms are fundamental to Computer Science

Of immense pragmatic importance Of great interest to mathematics Of great interest to natural sciences (physics, biology, chemistry)
Of great interest to social sciences too!

Final Thoughts

Grades are important but only in short term No one will ask you how well you did in CS 374 in a year or two

Use your algorithmic/theory/analytical skills to differentiate yourself from other IT professionals

Other Theory Courses

- "new" 473 (Theory 2) Jeff in Spring'16, Chandra in Fall'16
- Approximation algorithms (Chandra Spring'16)
- Computational Complexity (Kolla, Spring'16)
- Algorithmic Game Theory (Mehta, Spring '16)
- Randomized algorithms, Data structures, Computational Geometry, Algorithms for Big Data ...

Other "Theory ish" Courses

- Machine learning, statistical learning, ...
- Logic and formal methods
- Graph theory, combinatorics, ...
- Coding theory, information theory, signal processing
- Computational biology

Thanks!

