
CS/ECE 374 Midterm 2 Study Questions Fall 2016

This is a “core dump” of potential questions for Midterm 2. This should give you a good idea
of the types of questions that we will ask on the exam, but the actual exam questions may or may
not appear in this handout. This list intentionally includes a few questions that are too long or
difficult for exam conditions. In particular, there are several multipart questions where we would
ask only one or two parts on an exam.

Questions from Jeff’s past exams are labeled with the semester then they were used. Questions
from this semester’s labs are labeled 〈〈Lab〉〉.

Solving every problem in this handout is not the best way to study for the exam.
Memorizing the solutions to every problem in this handout is the absolute worst
way to study for the exam.

What we recommend instead is to work on a sample of the problems. Choose one or
two problems at random from each section and try to solve them from scratch under
exam conditions—by yourself, in a quiet room, with a 30-minute timer, without your
notes, without the internet, and if possible, even without your cheat sheet. If you’re
comfortable solving a few problems in a particular section, you’re probably ready for
that type of problem on the exam. Move on to the next section.

If you find yourself getting stuck on a problem, try to figure out why you’re stuck. Do
you understand the problem statement? Are you stuck on choosing the right high-level
approach, or are you stuck on the details? For recursion/dynamic programming:
Are you solving the right recursive generalization of the stated problem? For greedy
algorithms: Are you sure a greedy algorithm is a good idea? [Hint: Probably not.] For
graph algorithms: Are you aiming for the right problem? Are you using the right graph?

Discussing problems with other people (in your study groups, in the review sessions,
in office hours, or on Piazza) and/or looking up old solutions can be extremely helpful,
but only after you have (1) made a good-faith effort to solve the problem on your own,
and (2) you have either a candidate solution or some idea about where you’re getting
stuck.

When you do discuss problems with other people, remember that your goal is not
merely to “understand” the solution to any particular problem, but to become more
comfortable with solving a certain type of problem on your own. If you can identify
specific steps that you find problematic, read more about those steps, focus your practice
on those steps, and try to find helpful information about those steps to write on your
cheat sheet. Then work on the next problem!

1

CS/ECE 374 Midterm 2 Study Questions Fall 2016

Recursion and Dynamic Programming

Elementary Recursion/Divide and Conquer

1. 〈〈Lab〉〉

(a) Suppose A[1 .. n] is an array of n distinct integers, sorted so that A[1]< A[2]< · · ·<
A[n]. Each integer A[i] could be positive, negative, or zero. Describe a fast algorithm
that either computes an index i such that A[i] = i or correctly reports that no such
index exists..

(b) Now suppose A[1 .. n] is a sorted array of n distinct positive integers. Describe an
even faster algorithm that either computes an index i such that A[i] = i or correctly
reports that no such index exists. [Hint: This is really easy.]

2. 〈〈Lab〉〉 Suppose we are given an array A[1 .. n] such that A[1]≥ A[2] and A[n− 1]≤ A[n].
We say that an element A[x] is a local minimum if both A[x−1]≥ A[x] and A[x]≤ A[x+1].
For example, there are exactly six local minima in the following array:

9
Î
7 7 2

Î
1 3 7 5

Î
4 7

Î
3
Î
3 4 8

Î
6 9

Describe and analyze a fast algorithm that returns the index of one local minimum. For
example, given the array above, your algorithm could return the integer 5, because A[5]
is a local minimum. [Hint: With the given boundary conditions, any array must contain at
least one local minimum. Why?]

3. 〈〈Lab〉〉

(a) Suppose you are given two sorted arrays A[1 .. n] and B[1 .. n] containing distinct
integers. Describe a fast algorithm to find the median (meaning the nth smallest
element) of the union A∪ B. For example, given the input

A[1 .. 8] = [0, 1,6, 9,12, 13,18, 20] B[1 .. 8] = [2, 4,5, 8,17, 19,21, 23]

your algorithm should return the integer 9. [Hint: What can you learn by comparing
one element of A with one element of B?]

(b) Now suppose you are given two sorted arrays A[1 .. m] and B[1 .. n] and an integer k.
Describe a fast algorithm to find the kth smallest element in the union A∪ B. For
example, given the input

A[1 .. 8] = [0,1, 6,9, 12,13, 18,20] B[1 .. 5] = [2,5, 7,17, 19] k = 6

your algorithm should return the integer 7.

4. 〈〈HW〉〉 You are a visitor at a political convention (or perhaps a faculty meeting) with n
delegates; each delegate is a member of exactly one political party. It is impossible to tell
which political party any delegate belongs to; in particular, you will be summarily ejected
from the convention if you ask. However, you can determine whether any pair of delegates

2

CS/ECE 374 Midterm 2 Study Questions Fall 2016

belong to the same party or not simply by introducing them to each other—members of
the same party always greet each other with smiles and friendly handshakes; members of
different parties always greet each other with angry stares and insults.

(a) Suppose more than half of the delegates belong to the same political party. Describe
an efficient algorithm that identifies all members of this majority party.

(b) Now suppose exactly k political parties are represented at the convention and one
party has a plurality: more delegates belong to that party than to any other. Present
a practical procedure to pick out the people from the plurality political party as
parsimoniously as possible. (Please.)

5. 〈〈F14, S14〉〉 An array A[0 .. n−1] of n distinct numbers is bitonic if there are unique indices i
and j such that A[(i−1)mod n]< A[i]> A[(i+1)mod n] and A[(j−1)mod n]> A[j]<
A[(j + 1)mod n]. In other words, a bitonic sequence either consists of an increasing
sequence followed by a decreasing sequence, or can be circularly shifted to become so. For
example,

4 6 9 8 7 5 1 2 3 is bitonic, but

3 6 9 8 7 5 1 2 4 is not bitonic.

Describe and analyze an algorithm to find the index of the smallest element in a given
bitonic array A[0 .. n− 1] in O(log n) time. You may assume that the numbers in the input
array are distinct. For example, given the first array above, your algorithm should return 6,
because A[6] = 1 is the smallest element in that array.

3

CS/ECE 374 Midterm 2 Study Questions Fall 2016

Dynamic Programming

1. 〈〈Lab〉〉 Describe and analyze efficient for the following problems.

(a) Given an array A[1 .. n] of integers, compute the length of a longest increasing
subsequence of A. A sequence B[1 ..`] is increasing if B[i]> B[i − 1] for every index
i ≥ 2.

(b) Given an array A[1 .. n] of integers, compute the length of a longest decreasing
subsequence of A. A sequence B[1 ..`] is decreasing if B[i]< B[i − 1] for every index
i ≥ 2.

(c) Given an array A[1 .. n] of integers, compute the length of a longest alternating
subsequence of A. A sequence B[1 ..`] is alternating if B[i]< B[i − 1] for every even
index i ≥ 2, and B[i]> B[i − 1] for every odd index i ≥ 3.

(d) Given an arrayA[1 .. n] of integers, compute the length of a longest convex subsequence
of A. A sequence B[1 ..`] is convex if B[i]− B[i − 1] > B[i − 1]− B[i − 2] for every
index i ≥ 3.

(e) Given an array A[1 .. n], compute the length of a longest palindrome subsequence
of A. Recall that a sequence B[1 ..`] is a palindrome if B[i] = B[`− i + 1] for every
index i.

2. 〈〈S16〉〉 After the Revolutionary War, Alexander Hamilton’s biggest rival as a lawyer was
Aaron Burr. (Sir!) In fact, the two worked next door to each other. Unlike Hamilton, Burr
cannot work non-stop; every case he tries exhausts him. The bigger the case, the longer he
must rest before he is well enough to take the next case. (Of course, he is willing to wait
for it.) If a case arrives while Burr is resting, Hamilton snatches it up instead.

Burr has been asked to consider a sequence of n upcoming cases. He quickly computes
two arrays profit[1 .. n] and skip[1 .. n], where for each index i,

• profit[i] is the amount of money Burr would make by taking the ith case, and

• skip[i] is the number of consecutive cases Burr must skip if he accepts the ith case.
That is, if Burr accepts the ith case, he cannot accept cases i + 1 through i + skip[i].

Design and analyze an algorithm that determines the maximum total profit Burr can secure
from these n cases, using his two arrays as input.

3. 〈〈S14〉〉 Recall that a palindrome is any string that is the same as its reversal. For example,
I, DAD, HANNAH, AIBOHPHOBIA (fear of palindromes), and the empty string are all
palindromes.

(a) Describe and analyze an algorithm to find the length of the longest substring (not
subsequence!) of a given input string that is a palindrome. For example, BASEESAB is
the longest palindrome substring of BUBBASEESABANANA (“Bubba sees a banana.”).
Thus, given the input string BUBBASEESABANANA, your algorithm should return
the integer 8.

4

CS/ECE 374 Midterm 2 Study Questions Fall 2016

(b) Any string can be decomposed into a sequence of palindrome substrings. For example,
the string BUBBASEESABANANA can be broken into palindromes in the following
ways (and many others):

BUB+BASEESAB+ANANA
B+U+BB+A+SEES+ABA+NAN+A
B+U+BB+A+SEES+A+B+ANANA

B+U+B+B+A+S+E+E+S+A+B+A+N+A+N+A

Describe and analyze an algorithm to find the smallest number of palindromes that
make up a given input string. For example, if your input is the string BUBBASEESA-
BANANA, your algorithm should return the integer 3.

4. A shuffle of two strings X and Y is formed by interspersing the characters into a new
string, keeping the characters of X and Y in the same order. For example, the string
BANANAANANAS is a shuffle of the strings BANANA and ANANAS in several different ways.

BANANAANANAS BANANAANANAS BANANAANANAS

Similarly, the strings PRODGYRNAMAMMIINCG and DYPRONGARMAMMICING are both
shuffles of DYNAMIC and PROGRAMMING:

PRODGYRNAMAMMIINCG DYPRONGARMAMMICING

Describe and analyze an efficient algorithm to determine, given three strings A[1 .. m],
B[1 .. n], and C[1 .. m+ n], whether C is a shuffle of A and B.

5. Suppose you are given a sequence of non-negative integers separated by + and × signs; for
example:

2× 3+ 0× 6× 1+ 4× 2

You can change the value of this expression by adding parentheses in different places. For
example:

2× (3+ (0× (6× (1+ (4× 2))))) = 6

(((((2× 3) + 0)× 6)× 1) + 4)× 2= 80

((2× 3) + (0× 6))× (1+ (4× 2)) = 108

(((2× 3) + 0)× 6)× ((1+ 4)× 2) = 360

Describe and analyze an algorithm to compute, given a list of integers separated by + and
× signs, the smallest possible value we can obtain by inserting parentheses.

Your input is an array A[0 .. 2n] where each A[i] is an integer if i is even and + or × if i
is odd. Assume any arithmetic operation in your algorithm takes O(1) time.

6. Suppose you are given an array A[1 .. n] of numbers, which may be positive, negative, or
zero, and which are not necessarily integers.

5

CS/ECE 374 Midterm 2 Study Questions Fall 2016

(a) Describe and analyze an algorithm that finds the largest sum of of elements in a
contiguous subarray A[i .. j].

(b) Describe and analyze an algorithm that finds the largest product of of elements in a
contiguous subarray A[i .. j].

For example, given the array [−6, 12,−7, 0,14,−7, 5] as input, your first algorithm should
return the integer 19, and your second algorithm should return the integer 504.

sum=19
︷ ︸︸ ︷

−6 12 −7 0 14 −7 5
︸ ︷︷ ︸

product=504

For the sake of analysis, assume that comparing, adding, or multiplying any pair of numbers
takes O(1) time.

[Hint: Problem (a) has been a standard computer science interview question since at least
the mid-1980s. You can find many correct solutions on the web; the problem even has its
own Wikipedia page! But at least in 2016, a significant fraction of the solutions I found on
the web for problem (b) were either significantly slower than necessary or actually incorrect.
Remember that the product of two negative numbers is positive.]

7. Suppose you are given three strings A[1 .. n], B[1 .. n], and C[1 .. n].

(a) Describe and analyze an algorithm to find the length of the longest common sub-
sequence of all three strings. For example, given the input strings

A= AxxBxxCDxEF, B = yyABCDyEyFy, C = zAzzBCDzEFz,

your algorithm should output the number 6, which is the length of the longest common
subsequence ABCDEF.

(b) Describe and analyze an algorithm to find the length of the shortest common
supersequence of all three strings. For example, given the input strings

A= AxxBxxCDxEF, B = yyABCDyEyFy, C = zAzzBCDzEFz,

your algorithm should output the number 21, which is the length of the shortest
common supersequence yzyAxzzxBxxCDxyzEyFzy.

8. (a) Suppose we are given a set L of n line segments in the plane, where each segment
has one endpoint on the line y = 0 and one endpoint on the line y = 1, and all 2n
endpoints are distinct. Describe and analyze an algorithm to compute the largest
subset of L in which no pair of segments intersects.

(b) Suppose we are given a set L of n line segments in the plane, where each segment
has one endpoint on the line y = 0 and one endpoint on the line y = 1, and all 2n
endpoints are distinct. Describe and analyze an algorithm to compute the largest
subset of L in which every pair of segments intersects.

6

http://en.wikipedia.org/wiki/Maximum_subarray_problem

CS/ECE 374 Midterm 2 Study Questions Fall 2016

9. Suppose you are given an m× n bitmap, represented by an array M[1..n, 1..n] of 0s and
1s. A solid block in M is a subarray of the form M[i..i′, j.. j′] containing only 1-bits. A solid
block is square if it has the same number of rows and columns.

(a) Describe an algorithm to find the maximum area of a solid square block in M in O(n2)
time.

(b) Describe an algorithm to find the maximum area of a solid block in M in O(n3) time.
[Hint: Try for O(n4) first.]

10. 〈〈F14〉〉 The new swap-puzzle game Candy Swap Saga XIII involves n cute animals num-
bered 1 through n. Each animal holds one of three types of candy: circus peanuts, Heath
bars, and Cioccolateria Gardini chocolate truffles. You also have a candy in your hand; at
the start of the game, you have a circus peanut.

To earn points, you visit each of the animals in order from 1 to n. For each animal,
you can either keep the candy in your hand or exchange it with the candy the animal is
holding.

• If you swap your candy for another candy of the same type, you earn one point.

• If you swap your candy for a candy of a different type, you lose one point. (Yes, your
score can be negative.)

• If you visit an animal and decide not to swap candy, your score does not change.

You must visit the animals in order, and once you visit an animal, you can never visit it
again.

Describe and analyze an efficient algorithm to compute your maximum possible score.
Your input is an array C[1 .. n], where C[i] is the type of candy that the ith animal is
holding.

11. 〈〈F14〉〉 Farmers Boggis, Bunce, and Bean have set up an obstacle course for Mr. Fox. The
course consists of a row of n booths, each with an integer painted on the front with bright
red paint, which could be positive, negative, or zero. Let A[i] denote the number painted
on the front of the ith booth. Everyone has agreed to the following rules:

• At each booth, Mr. Fox must say either “Ring!” or “Ding!”.

• If Mr. Fox says “Ring!” at the ith booth, he earns a reward of A[i] chickens. (If
A[i]< 0, Mr. Fox pays a penalty of −A[i] chickens.)

• If Mr. Fox says “Ding!” at the ith booth, he pays a penalty of A[i] chickens. (If A[i]< 0,
Mr. Fox earns a reward of −A[i] chickens.)

• Mr. Fox is forbidden to say the same word more than three times in a row. For
example, if he says “Ring!” at booths 6, 7, and 8, then he must say “Ding!” at booth 9.

• All accounts will be settled at the end; Mr. Fox does not actually have to carry chickens
through the obstacle course.

• If Mr. Fox violates any of the rules, or if he ends the obstacle course owing the farmers
chickens, the farmers will shoot him.

7

CS/ECE 374 Midterm 2 Study Questions Fall 2016

Describe and analyze an algorithm to compute the largest number of chickens that Mr. Fox
can earn by running the obstacle course, given the array A[1 .. n] of booth numbers as
input.

8

CS/ECE 374 Midterm 2 Study Questions Fall 2016

Greedy Algorithms

Remember that you will receive zero points for a greedy algorithm, even if it is perfectly correct,
unless you also give a formal proof of correctness.

1. 〈〈Lab〉〉 Recall the class scheduling problem described in lecture on Tuesday. We are given
two arrays S[1 .. n] and F[1 .. n], where S[i]< F[i] for each i, representing the start and
finish times of n classes. Your goal is to find the largest number of classes you can take
without ever taking two classes simultaneously. We showed in class that the following
greedy algorithm constructs an optimal schedule:

Choose the course that ends first, discard all conflicting classes, and recurse.

But this is not the only greedy strategy we could have tried. For each of the following
alternative greedy algorithms, either prove that the algorithm always constructs an optimal
schedule, or describe a small input example for which the algorithm does not produce an
optimal schedule. Assume that all algorithms break ties arbitrarily (that is, in a manner
that is completely out of your control).

[Hint: Exactly three of these greedy strategies actually work.]

(a) Choose the course x that ends last, discard classes that conflict with x , and recurse.

(b) Choose the course x that starts first, discard all classes that conflict with x , and
recurse.

(c) Choose the course x that starts last, discard all classes that conflict with x , and
recurse.

(d) Choose the course x with shortest duration, discard all classes that conflict with x ,
and recurse.

(e) Choose a course x that conflicts with the fewest other courses, discard all classes that
conflict with x , and recurse.

(f) If no classes conflict, choose them all. Otherwise, discard the course with longest
duration and recurse.

(g) If no classes conflict, choose them all. Otherwise, discard a course that conflicts with
the most other courses and recurse.

(h) Let x be the class with the earliest start time, and let y be the class with the second
earliest start time.

• If x and y are disjoint, choose x and recurse on everything but x .
• If x completely contains y , discard x and recurse.
• Otherwise, discard y and recurse.

(i) If any course x completely contains another course, discard x and recurse. Otherwise,
choose the course y that ends last, discard all classes that conflict with y , and recurse.

2. 〈〈S14〉〉 Binaria uses coins whose values are 1, 2,4, . . . , 2k, the first k powers of two, for
some integer k. As in most countries, Binarian shopkeepers always make change using the
following greedy algorithm:

9

CS/ECE 374 Midterm 2 Study Questions Fall 2016

MakeChange(N):
if N = 0

say “Thank you, come again!”
else

c← largest coin value such that c ≤ N
give the customer one c cent coin
MakeChange(N − c)

For example, to make 37 cents in change, the shopkeeper would give the customer one 32
cent coin, one 4 cent coin, and one 1 cent coin, and then say “Thank you, come again!”
(For purposes of this problem, assume that every shopkeeper has an unlimited supply of
each type of coin.)

Prove that this greedy algorithm always uses the smallest possible number of coins.
[Hint: Prove that the greedy algorithm uses at most one coin of each denomination.]

3. Let X be a set of n intervals on the real line. We say that a set P of points stabs X if every
interval in X contains at least one point in P. Describe and analyze an efficient algorithm
to compute the smallest set of points that stabs X . Assume that your input consists of two
arrays L[1 .. n] and R[1 .. n], representing the left and right endpoints of the intervals in X .
If you use a greedy algorithm, don’t forget to prove that it is correct.

10

CS/ECE 374 Midterm 2 Study Questions Fall 2016

Graph Algorithms

Sanity Check

1. 〈〈S14, F14〉〉 Indicate the following structures in the example graphs below. If the requested
structure does not exist, just write None. To indicate a subgraph, draw over the entire
edge with a heavy black line; your answer should be visible from across the room. [On an
exam, we would only ask about one graph, we would not ask for all these structures, and we
would give you several copies of the graph on which to mark your answers.]

4 2

3

1

5

2

–2

7

5

2

1
2 6

4

4

s a

d

c

e

b

f

4 2

3

1

3

3

–8

2

5

2

1

2

6

4

1

s a

d

c

e

b

f

(a) A depth-first spanning tree rooted at node s.

(b) A breadth-first spanning tree rooted at node s.

(c) A shortest-path tree rooted at node s.

(d) The set of all vertices reachable from node c. (Circle each vertex.)

(e) The set of all vertices from which node c is reachable. (Circle each vertex.)

(f) The strongly connected components. (Circle each strongly connected component.)

(g) The shortest directed cycle.

(h) A topological order. (List the vertices in order.)

(i) A walk from s to d with the maximum number of edges.

(j) A walk from s to d with the largest total weight.

11

CS/ECE 374 Midterm 2 Study Questions Fall 2016

Reachability/Connectivity/Traversal

1. 〈〈F14〉〉 Suppose you are given a directed graph G = (V, E) and two vertices s and t. Describe
and analyze an algorithm to determine if there is a walk in G from s to t (possibly repeating
vertices and/or edges) whose length is divisible by 3.

For example, given the graph below, with the indicated vertices s and t, your algorithm
should return True, because the walk s�w�y�x�s�w�t has length 6.

x y

ws

z

t

[Hint: Build a (different) graph.]

2. 〈〈Lab〉〉 Snakes and Ladders is a classic board game, originating in India no later than
the 16th century. The board consists of an n× n grid of squares, numbered consecutively
from 1 to n2, starting in the bottom left corner and proceeding row by row from bottom to
top, with rows alternating to the left and right. Certain pairs of squares, always in different
rows, are connected by either “snakes” (leading down) or “ladders” (leading up). Each
square can be an endpoint of at most one snake or ladder.

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

41 42 43 44 45 46 47 48 49 50

60 59 58 57 56 55 54 53 52 51

61 62 63 64 65 66 67 68 69 70

80 79 78 77 76 75 74 73 72 71

81 82 83 84 85 86 87 88 89 90

100 99 98 97 96 95 94 93 92 91

A typical Snakes and Ladders board.
Upward straight arrows are ladders; downward wavy arrows are snakes.

You start with a token in cell 1, in the bottom left corner. In each move, you advance
your token up to k positions, for some fixed constant k (typically 6). If the token ends the
move at the top end of a snake, you must slide the token down to the bottom of that snake.
If the token ends the move at the bottom end of a ladder, you may move the token up to
the top of that ladder.

Describe and analyze an algorithm to compute the smallest number of moves required
for the token to reach the last square of the grid.

3. Let G be a connected undirected graph. Suppose we start with two coins on two arbitrarily
chosen vertices of G, and we want to move the coins so that they lie on the same vertex
using as few moves as possible. At every step, each coin must move to an adjacent vertex.

12

CS/ECE 374 Midterm 2 Study Questions Fall 2016

(a) 〈〈Lab〉〉 Describe and analyze an algorithm to compute the minimum number of
steps to reach a configuration where both coins are on the same vertex, or to report
correctly that no such configuration is reachable. The input to your algorithm consists
of a graph G = (V, E) and two vertices u, v ∈ V (which may or may not be distinct).

(b) Now suppose there are three coins. Describe and analyze an algorithm to compute
the minimum number of steps to reach a configuration where both coins are on the
same vertex, or to report correctly that no such configuration is reachable. [Hint:
Some people already considered this problem in lab.]

(c) Finally, suppose there are forty-two coins. Describe and analyze an algorithm to
determine whether it is possible to move all 42 coins to the same vertex. Again, every
coin must move at every step. For full credit, your algorithm should run in O(V + E)
time.

4. A graph (V, E) is bipartite if the vertices V can be partitioned into two subsets L and R,
such that every edge has one vertex in L and the other in R.

(a) Prove that every tree is a bipartite graph.

(b) Describe and analyze an efficient algorithm that determines whether a given undi-
rected graph is bipartite.

5. 〈〈F14〉〉 A number maze is an n× n grid of positive integers. A token starts in the upper
left corner; your goal is to move the token to the lower-right corner. On each turn, you are
allowed to move the token up, down, left, or right; the distance you may move the token is
determined by the number on its current square. For example, if the token is on a square
labeled 3, then you may move the token three steps up, three steps down, three steps left,
or three steps right. However, you are never allowed to move the token off the edge of the
board.

Describe and analyze an efficient algorithm that either returns the minimum number
of moves required to solve a given number maze, or correctly reports that the maze has
no solution. For example, given the maze shown below, your algorithm would return the
number 8.

3 5
5 3

7 4
1 5

2 8
4 5

3 1
7 2

6
3
4
3

3 1 3 2 ★

3 5
5 3

7 4
1 5

2 8
4 5

3 1
7 2

6
3
4
3

3 1 3 2 ★

A 5× 5 number maze that can be solved in eight moves.

6. Kaniel Dane is a solitaire puzzle played with two tokens on an n× n square grid. Some
squares of the grid are marked as obstacles, and one grid square is marked as the target.
In each turn, the player can move either of the tokens from is current position as far as
possible upward, downward, right, or left, stopping just before the token hits (1) the edge

13

CS/ECE 374 Midterm 2 Study Questions Fall 2016

of the board, (2) an obstacle square, or (3) the other token. The goal is to move either of
the tokens onto the target square.

1
2

3

4
5

6

An instance of the Kaniel Dane puzzle that can be solved in six moves.
Circles indicate the initial token positions; black squares are obstacles; the center square is the target.

Describe and analyze an algorithm to determine whether an instance of this puzzle
is solvable. Your input consist of the integer n, a list of obstacle locations, the target
location, and the initial locations of the tokens. The output of your algorithm is a single
boolean: True if the given puzzle is solvable and False otherwise. The running time of
your algorithm should be a small polynomial in n.

14

CS/ECE 374 Midterm 2 Study Questions Fall 2016

Depth-First Search, Dags, Strong Connectivity

1. 〈〈Lab〉〉 Inspired by an earlier question, you decided to organize a Snakes and Ladders
competition with n participants. In this competition, each game of Snakes and Ladders
involves three players. After the game is finished, they are ranked first, second and third.
Each player may be involved in any (non-negative) number of games, and the number
needs not be equal among players.

At the end of the competition, m games have been played. You realized that you had
forgotten to implement a proper rating system, and therefore decided to produce the
overall ranking of all n players as you see fit. However, to avoid being too suspicious, if
player A ranked better than player B in any game, then A must rank better than B in the
overall ranking.

You are given the list of players involved and the ranking in each of the m games. Describe
and analyze an algorithm to produce an overall ranking of the n players that satisfies the
condition, or correctly reports that it is impossible.

2. Let G be a directed acyclic graph with a unique source s and a unique sink t.

(a) A Hamiltonian path in G is a directed path in G that contains every vertex in G.
Describe an algorithm to determine whether G has a Hamiltonian path.

(b) Suppose the vertices of G have weights. Describe an efficient algorithm to find the
path from s to t with maximum total weight.

(c) Suppose we are also given an integer `. Describe an efficient algorithm to find the
maximum-weight path from s to t, such that the path contains at most ` edges.
(Assume there is at least one such path.)

(d) Suppose several vertices in G are marked essential, and we are given an integer k.
Design an efficient algorithm to determine whether there is a path from s to t that
passes through at least k essential vertices.

(e) Suppose the vertices of G have integer labels, where label(s) = −∞ and label(t) =∞.
Describe an algorithm to find the path from s to t with the maximum number of
edges, such that the vertex labels define an increasing sequence.

(f) 〈〈Lab〉〉 Describe an algorithm to compute the number of distinct paths from s to t
in G. (Assume that you can add arbitrarily large integers in O(1) time.)

3. Suppose you are given a directed graph G in which every edge has negative weight, and a
source vertex s. Describe and analyze an efficient algorithm that computes the shortest
path distances from s to every other vertex in G. Specifically, for every vertex t:

• If t is not reachable from s, your algorithm should report dist(t) =∞.

• If the shortest-path distance from s to t is not well-defined because of negative cycles,
your algorithm should report dist(t) = −∞.

• If neither of the two previous conditions applies, your algorithm should report the
correct shortest-path distance from s to t.

[Hint: First think about graphs where the first two conditions never happen.]

15

CS/ECE 374 Midterm 2 Study Questions Fall 2016

Shortest Paths

1. 〈〈F14〉〉 Let G be a directed graph with weighted edges, and let s be a vertex of G. Suppose
every vertex v 6= s stores a pointer pred(v) to another vertex in G. Describe and analyze an
algorithm to determine whether these predecessor pointers correctly define a single-source
shortest path tree rooted at s. Do not assume that G has no negative cycles.

2. 〈〈F14〉〉 Suppose we are given an undirected graph G in which every vertex has a positive
weight.

(a) Describe and analyze an algorithm to find a spanning tree of G with minimum total
weight. (The total weight of a spanning tree is the sum of the weights of its vertices.)

(b) Describe and analyze an algorithm to find a path in G from one given vertex s to
another given vertex t with minimum total weight. (The total weight of a path is the
sum of the weights of its vertices.)

3. 〈〈S14, Lab〉〉 You just discovered your best friend from elementary school on Twitbook.
You both want to meet as soon as possible, but you live in two different cites that are far
apart. To minimize travel time, you agree to meet at an intermediate city, and then you
simultaneously hop in your cars and start driving toward each other. But where exactly
should you meet?

You are given a weighted graph G = (V, E), where the vertices V represent cities and
the edges E represent roads that directly connect cities. Each edge e has a weight w(e)
equal to the time required to travel between the two cities. You are also given a vertex p,
representing your starting location, and a vertex q, representing your friend’s starting
location.

Describe and analyze an algorithm to find the target vertex t that allows you and your
friend to meet as quickly as possible.

4. There are n galaxies connected by m intergalactic teleport-ways. Each teleport-way joins
two galaxies and can be traversed in both directions. Also, each teleport-way e has an
associated cost of c(e) dollars, where c(e) is a positive integer. A teleport-way can be used
multiple times, but the toll must be paid every time it is used.

Judy wants to travel from galaxy s to galaxy t, but teleportation is not very pleasant
and she would like to minimize the number of times she needs to teleport. However, she
wants the total cost to be a multiple of five dollars, because carrying small change is not
pleasant either.

(a) Describe and analyze an algorithm to compute the smallest number of times Judy
needs to teleport to travel from galaxy s to galaxy t while the total cost is a multiple
of five dollars.

(b) Solve part (a), but now assume that Judy has a coupon that allows her to use one
teleport-way for free.

[Hint: No, this is not the same Intergalactic Judy problem that you saw in lab.]

16

CS/ECE 374 Midterm 2 Study Questions Fall 2016

5. 〈〈Lab〉〉 A looped tree is a weighted, directed graph built from a binary tree by adding an
edge from every leaf back to the root. Every edge has non-negative weight.

5 8

17 0 1

23 9 14

42416 7

Figure 1. A looped tree.

(a) How much time would Dijkstra’s algorithm require to compute the shortest path
between two vertices u and v in a looped tree with n nodes?

(b) Describe and analyze a faster algorithm.

6. After graduating you accept a job with Aerophobes- R-Us, the leading traveling agency for
people who hate to fly. Your job is to build a system to help customers plan airplane trips
from one city to another. All of your customers are afraid of flying (and by extension,
airports), so any trip you plan needs to be as short as possible. You know all the departure
and arrival times of all the flights on the planet.

Suppose one of your customers wants to fly from city X to city Y . Describe an algorithm
to find a sequence of flights that minimizes the total time in transit—the length of time from
the initial departure to the final arrival, including time at intermediate airports waiting for
connecting flights.

7. When there is more than one shortest path from one node s to another node t, it is often
convenient to choose a shortest path with the fewest edges; call this the best path from s
to t. Suppose we are given a directed graph G with positive edge weights and a source
vertex s in G. Describe and analyze an algorithm to compute best paths in G from s to
every other vertex.

17

