
CS/ECE 374] Fall 2016

Y Homework 5 Z
Due Tuesday, October 11, 2016 at 8pm

1. For each of the following problems, the input consists of two arrays X [1 .. k] and Y [1 .. n]
where k ≤ n.

(a) Describe and analyze an algorithm to determine whether X occurs as two disjoint
subsequences of Y , where “disjoint” means the two subsequences have no indices in
common. For example, the string PPAP appears as two disjoint subsequences in the
string PENPINEAPPLEAPPLEPEN, but the string PEEPLE does not.

(b) Describe and analyze an algorithm to compute the number of occurrences of X as
a subsequence of Y . For example, the string PPAP appears exactly 23 times as a
subsequence of the string PENPINEAPPLEAPPLEPEN. If all characters in X and Y
are equal, your algorithm should return

�n
k

�

. For purposes of analysis, assume that
each arithmetic operation takes O(1) time.

2. You are driving a bus along a long straight highway, full of rowdy, hyper, thirsty students
and an endless supply of soda. Each minute that each student is on your bus, that student
drinks one ounce of soda. Your goal is to drive all students home, so that the total volume
of soda consumed by the students is as small as possible.

Your bus begins at an exit (probably not at either end) with all students on board and
moves at a constant speed of 37.4 miles per hour. Each student needs to be dropped off
at a highway exit. You may reverse directions as often as you like; for example, you are
allowed to drive forward to the next exit, let some students off, then turn around and drive
back to the previous exit, drop more students off, then turn around again and drive to
further exits. (Assume that at each exit, you can stop the bus, drop off students, and if
necessary turn around, all instantaneously.)

Describe an efficient algorithm to take the students home so that they drink as little
soda as possible. Your algorithm will be given the following input:

• A sorted array L[1 .. n], where L[i] is the Location of the ith exit, measured in miles
from the first exit; in particular, L[1] = 0.

• An array N[1 .. n], where N[i] is the Number of students you need to drop off at the
ith exit

• An integer start equal to the index of the starting exit.

Your algorithm should return the total volume of soda consumed by the students when you
drive the optimal route.¹

¹Non-US students are welcome to assume kilometers and liters instead of miles and ounces. Late 18th-century
French students are welcome to use decimal minutes.

CS/ECE 374 Homework 5 (due October 11) Fall 2016

3. Vankin’s Mile is an American solitaire game played on an n× n square grid. The player
starts by placing a token on any square of the grid. Then on each turn, the player moves
the token either one square to the right or one square down. The game ends when player
moves the token off the edge of the board. Each square of the grid has a numerical value,
which could be positive, negative, or zero. The player starts with a score of zero; whenever
the token lands on a square, the player adds its value to his score. The object of the game
is to score as many points as possible.

For example, given the grid below, the player can score 8−6+7−3+4= 10 points by
placing the initial token on the 8 in the second row, and then moving down, down, right,
down, down. (This is not the best possible score for these values.)

−1 7 −8 10 −5

−4 −9 8
⇓
−6 0

5 −2 −6
⇓
−6 7

−7 4 7⇒−3
⇓
−3

7 1 −6 4
⇓
−9

(a) Describe and analyze an efficient algorithm to compute the maximum possible score
for a game of Vankin’s Mile, given the n× n array of values as input.

(b) In the Canadian version of this game, appropriately called Vankin’s Kilometer, the
player can move the token either one square down, one square right, or one square
left in each turn. However, to prevent infinite scores, the token cannot land on the
same square more than once. Describe and analyze an efficient algorithm to compute
the maximum possible score for a game of Vankin’s Kilometer, given the n× n array
of values as input.²

²If we also allowed upward movement, the resulting game (Vankin’s Fathom?) would be NP-hard.

2

CS/ECE 374 Homework 5 (due October 11) Fall 2016

Solved Problem

4. A shuffle of two strings X and Y is formed by interspersing the characters into a new
string, keeping the characters of X and Y in the same order. For example, the string
BANANAANANAS is a shuffle of the strings BANANA and ANANAS in several different ways.

BANANAANANAS BANANAANANAS BANANAANANAS

Similarly, the strings PRODGYRNAMAMMIINCG and DYPRONGARMAMMICING are both
shuffles of DYNAMIC and PROGRAMMING:

PRODGYRNAMAMMIINCG DYPRONGARMAMMICING

Given three strings A[1 .. m], B[1 .. n], and C[1 .. m+n], describe and analyze an algorithm
to determine whether C is a shuffle of A and B.

Solution: We define a boolean function Shuf(i, j), which is True if and only if the prefix
C[1 .. i + j] is a shuffle of the prefixes A[1 .. i] and B[1 .. j]. This function satisfies the
following recurrence:

Shuf(i, j) =

True if i = j = 0

Shuf(0, j − 1)∧ (B[j] = C[j]) if i = 0 and j > 0

Shuf(i − 1,0)∧ (A[i] = C[i]) if i > 0 and j = 0
�

Shuf(i − 1, j)∧ (A[i] = C[i + j])
�

∨
�

Shuf(i, j − 1)∧ (B[j] = C[i + j])
�

if i > 0 and j > 0

We need to compute Shuf(m, n).

We can memoize all function values into a two-dimensional array Shuf[0 .. m][0 .. n].
Each array entry Shuf[i, j] depends only on the entries immediately below and immediately
to the right: Shuf[i − 1, j] and Shuf[i, j − 1]. Thus, we can fill the array in standard
row-major order. The original recurrence gives us the following pseudocode:

Shuffle?(A[1 .. m], B[1 .. n], C[1 .. m+ n]):
Shuf[0,0]← True
for j← 1 to n

Shuf[0, j]← Shuf[0, j − 1]∧ (B[j] = C[j])
for i← 1 to n

Shuf[i, 0]← Shuf[i − 1,0]∧ (A[i] = B[i])
for j← 1 to n

Shuf[i, j]← False
if A[i] = C[i + j]

Shuf[i, j]← Shuf[i, j]∨ Shuf[i − 1, j]
if B[i] = C[i + j]

Shuf[i, j]← Shuf[i, j]∨ Shuf[i, j − 1]

return Shuf[m, n]

The algorithm runs in O(mn) time. �

3

CS/ECE 374 Homework 5 (due October 11) Fall 2016

Rubric: Max 10 points: Standard dynamic programming rubric. No proofs required.
Max 7 points for a slower polynomial-time algorithm; scale partial credit accordingly.

Standard dynamic programming rubric. For problems worth 10 poins:

• 6 points for a correct recurrence, described either using mathematical notation
or as pseudocode for a recursive algorithm.

+ 1 point for a clear English description of the function you are trying to
evaluate. (Otherwise, we don’t even know what you’re trying to do.)
Automatic zero if the English description is missing.

+ 1 point for stating how to call your function to get the final answer.

+ 1 point for base case(s). −½ for one minor bug, like a typo or an off-by-one
error.

+ 3 points for recursive case(s). −1 for each minor bug, like a typo or an off-
by-one error. No credit for the rest of the problem if the recursive
case(s) are incorrect.

• 4 points for details of the dynamic programming algorithm

+ 1 point for describing the memoization data structure

+ 2 points for describing a correct evaluation order; a clear picture is usually
sufficient. If you use nested loops, be sure to specify the nesting order.

+ 1 point for time analysis

• It is not necessary to state a space bound.

• For problems that ask for an algorithm that computes an optimal structure—such
as a subset, partition, subsequence, or tree—an algorithm that computes only
the value or cost of the optimal structure is sufficient for full credit, unless the
problem says otherwise.

• Official solutions usually include pseudocode for the final iterative dynamic
programming algorithm, but iterative psuedocode is not required for full
credit. If your solution includes iterative pseudocode, you do not need to
separately describe the recurrence, memoization structure, or evaluation order.
(But you still need to describe the underlying recursive function in English.)

• Official solutions will provide target time bounds. Algorithms that are faster than
this target are worth more points; slower algorithms are worth fewer points,
typically by 2 or 3 points (out of 10) for each factor of n. Partial credit is scaled
to the new maximum score, and all points above 10 are recorded as extra credit.

We rarely include these target time bounds in the actual questions, because
when we have included them, significantly more students turned in algorithms
that meet the target time bound but didn’t work (earning 0/10) instead of correct
algorithms that are slower than the target time bound (earning 8/10).

4

