
CS/ECE 374] Fall 2016

Y Homework 6 Z
Due Tuesday, October 16, 2016 at 8pm

1. Every year, as part of its annual meeting, the Antarctican Snail Lovers of Upper Glacierville
hold a Round Table Mating Race. Several high-quality breeding snails are placed at the
edge of a round table. The snails are numbered in order around the table from 1 to n.
During the race, each snail wanders around the table, leaving a trail of slime behind it.
The snails have been specially trained never to fall off the edge of the table or to cross a
slime trail, even their own. If two snails meet, they are declared a breeding pair, removed
from the table, and whisked away to a romantic hole in the ground to make little baby
snails. Note that some snails may never find a mate, even if the race goes on forever.

1

2

3

4

5

6

7

8 8

1

5 2

6

3
4

7

The end of a typical Antarctican SLUG race. Snails 6 and 8 never find mates.
The organizers must pay M[3,4] +M[2, 5] +M[1,7].

For every pair of snails, the Antarctican SLUG race organizers have posted a monetary
reward, to be paid to the owners if that pair of snails meets during the Mating Race.
Specifically, there is a two-dimensional array M[1 .. n, 1 .. n] posted on the wall behind
the Round Table, where M[i, j] = M[j, i] is the reward to be paid if snails i and j meet.
Rewards may be positive, negative, or zero.

Describe and analyze an algorithm to compute the maximum total reward that the
organizers could be forced to pay, given the array M as input.

CS/ECE 374 Homework 6 (due October 16) Fall 2016

2. You and your eight-year-old nephew Elmo decide to play a simple card game. At the
beginning of the game, the cards are dealt face up in a long row. Each card is worth a
different number of points. After all the cards are dealt, you and Elmo take turns removing
either the leftmost or rightmost card from the row, until all the cards are gone. At each
turn, you can decide which of the two cards to take. The winner of the game is the player
that has collected the most points when the game ends.

Having never taken an algorithms class, Elmo follows the obvious greedy strategy—
when it’s his turn, Elmo always takes the card with the higher point value. Your task is to
find a strategy that will beat Elmo whenever possible. (It might seem mean to beat up on a
little kid like this, but Elmo absolutely hates it when grown-ups let him win.)

(a) Prove that you should not also use the greedy strategy. That is, show that there is
a game that you can win, but only if you do not follow the same greedy strategy as
Elmo.

(b) Describe and analyze an algorithm to determine, given the initial sequence of cards,
the maximum number of points that you can collect playing against Elmo.

(c) Five years later, Elmo has become a significantly stronger player. Describe and analyze
an algorithm to determine, given the initial sequence of cards, the maximum number
of points that you can collect playing against a perfect opponent. [Hint: What is a
perfect opponent?]

2

CS/ECE 374 Homework 6 (due October 16) Fall 2016

3. One day, Alex got tired of climbing in a gym and decided to take a very large group of
climber friends outside to climb. The climbing area where they went, had a huge wide
boulder, not very tall, with various marked hand and foot holds. Alex quickly determined
an “allowed” set of moves that her group of friends can perform to get from one hold to
another.

The overall system of holds can be described by a rooted tree T with n vertices, where
each vertex corresponds to a hold and each edge corresponds to an allowed move between
holds. The climbing paths converge as they go up the boulder, leading to a unique hold at
the summit, represented by the root of T .¹

Alex and her friends (who are all excellent climbers) decided to play a game, where as
many climbers as possible are simultaneously on the boulder and each climber needs to
perform a sequence of exactly k moves. Each climber can choose an arbitrary hold to start
from, and all moves must move away from the ground. Thus, each climber traces out a
path of k edges in the tree T , all directed toward the root. However, no two climbers are
allowed to touch the same hold; the paths followed by different climbers cannot intersect
at all.

Describe and analyze an efficient algorithm to compute the maximum number of
climbers that can play this game. More formally, you are given a rooted tree T and an
integer k, and you want to find the largest possible number of disjoint paths in T , where
each path has length k. For full credit, do not assume that T is a binary tree. For example,
given the tree T below and k = 3 as input, your algorithm should return the integer 8.

Seven disjoint paths of length k=3 in a rooted tree.
This is not the largest such set of paths in this tree.

¹Q: Why do computer science professors think trees have their roots at the top?
A: Because they’ve never been outside!

3

CS/ECE 374 Homework 6 (due October 16) Fall 2016

Solved Problems

4. A string w of parentheses ((and)) and brackets [[and]] is balanced if it is generated by
the following context-free grammar:

S→ ε | ((S)) | [[S]] | SS

For example, the string w= (([[(())]][[]](())))[[(())(())]](()) is balanced, because w= x y , where

x = (([[(())]] [[]] (()))) and y = [[(()) (())]] (()).

Describe and analyze an algorithm to compute the length of a longest balanced
subsequence of a given string of parentheses and brackets. Your input is an array A[1 .. n],
where A[i] ∈ {((,)),[[,]]} for every index i.

Solution: Suppose A[1 .. n] is the input string. For all indices i and j, we write A[i] ∼ A[j]
to indicate that A[i] and A[j] are matching delimiters: Either A[i] = ((and A[j] =)) or
A[i] = [[and A[j] =]].

For all indices i and j, let LBS(i, j) denote the length of the longest balanced subsequence
of the substring A[i .. j]. We need to compute LBS(1, n). This function obeys the following
recurrence:

LBS(i, j) =

0 if i ≥ j

max

(

2+ LBS(i + 1, j − 1)
j−1

max
k=1

�

LBS(i, k) + LBS(k+ 1, j)
�

)

if A[i]∼ A[j]

j−1
max
k=1

�

LBS(i, k) + LBS(k+ 1, j)
�

otherwise

We can memoize this function into a two-dimensional array LBS[1 .. n, 1 .. n]. Since
every entry LBS[i, j] depends only on entries in later rows or earlier columns (or both), we
can evaluate this array row-by-row from bottom up in the outer loop, scanning each row
from left to right in the inner loop. The resulting algorithm runs in O(n3) time.

LongestBalancedSubsequence(A[1 .. n]):
for i← n down to 1

LBS[i, i]← 0
for j← i + 1 to n

if A[i]∼ A[j]
LBS[i, j]← LBS[i + 1, j − 1] + 2

else
LBS[i, j]← 0

for k← i to j − 1
LBS[i, j]←max

�

LBS[i, j], LBS[i, k] + LBS[k+ 1, j]
	

return LBS[1, n]

�

Rubric: 10 points, standard dynamic programming rubric

4

CS/ECE 374 Homework 6 (due October 16) Fall 2016

5. Oh, no! You’ve just been appointed as the new organizer of Giggle, Inc.’s annual mandatory
holiday party! The employees at Giggle are organized into a strict hierarchy, that is, a tree
with the company president at the root. The all-knowing oracles in Human Resources have
assigned a real number to each employee measuring how “fun” the employee is. In order
to keep things social, there is one restriction on the guest list: An employee cannot attend
the party if their immediate supervisor is also present. On the other hand, the president
of the company must attend the party, even though she has a negative fun rating; it’s her
company, after all.

Describe an algorithm that makes a guest list for the party that maximizes the sum of
the “fun” ratings of the guests. The input to your algorithm is a rooted tree T describing
the company hierarchy, where each node v has a field v.fun storing the “fun” rating of the
corresponding employee.

Solution (two functions): We define two functions over the nodes of T .

• MaxFunYes(v) is the maximum total “fun” of a legal party among the descendants
of v, where v is definitely invited.

• MaxFunNo(v) is the maximum total “fun” of a legal party among the descendants
of v, where v is definitely not invited.

We need to compute MaxFunYes(root). These two functions obey the following mutual
recurrences:

MaxFunYes(v) = v.fun+
∑

children w of v

MaxFunNo(w)

MaxFunNo(v) =
∑

children w of v

max{MaxFunYes(w),MaxFunNo(w)}

(These recurrences do not require separate base cases, because
∑

∅= 0.) We can memoize
these functions by adding two additional fields v.yes and v.no to each node v in the tree.
The values at each node depend only on the vales at its children, so we can compute all 2n
values using a postorder traversal of T .

BestParty(T):
ComputeMaxFun(T.root)
return T.root.yes

ComputeMaxFun(v):
v.yes← v.fun
v.no← 0
for all children w of v

ComputeMaxFun(w)
v.yes← v.yes+w.no
v.no← v.no+max{w.yes, w.no}

(Yes, this is still dynamic programming; we’re only traversing the tree recursively because
that’s the most natural way to traverse trees!²) The algorithm spends O(1) time at each
node, and therefore runs in O(n) time altogether. �

²A naïve recursive implementation would run in O(φn) time in the worst case, where φ = (1+
p

5)/2≈ 1.618 is
the golden ratio. The worst-case tree is a path—every non-leaf node has exactly one child.

5

CS/ECE 374 Homework 6 (due October 16) Fall 2016

Solution (one function): For each node v in the input tree T , let MaxFun(v) denote the
maximum total “fun” of a legal party among the descendants of v, where v may or may
not be invited.

The president of the company must be invited, so none of the president’s “children”
in T can be invited. Thus, the value we need to compute is

root.fun+
∑

grandchildren w of root

MaxFun(w).

The function MaxFun obeys the following recurrence:

MaxFun(v) =max

v.fun+
∑

grandchildren x of v

MaxFun(x)

∑

children w of v

MaxFun(w)

(This recurrence does not require a separate base case, because
∑

∅= 0.) We can memoize
this function by adding an additional field v.maxFun to each node v in the tree. The value
at each node depends only on the values at its children and grandchildren, so we can
compute all values using a postorder traversal of T .

BestParty(T):
ComputeMaxFun(T.root)
party← T.root.fun
for all children w of T.root

for all children x of w
party← party+ x .maxFun

return party

ComputeMaxFun(v):
yes← v.fun
no← 0
for all children w of v

ComputeMaxFun(w)
no← no+w.maxFun
for all children x of w

yes← yes+ x .maxFun
v.maxFun←max{yes,no}

(Yes, this is still dynamic programming; we’re only traversing the tree recursively because
that’s the most natural way to traverse trees!³)

The algorithm spends O(1) time at each node (because each node has exactly one
parent and one grandparent) and therefore runs in O(n) time altogether. �

Rubric: 10 points: standard dynamic programming rubric. These are not the only
correct solutions.

³Like the previous solution, a direct recursive implementation would run in O(φn) time in the worst case, where
φ = (1+

p
5)/2≈ 1.618 is the golden ratio.

6

