
Finite State Machines

Lecture 3

1



C
S 

37
4

Recall a Language is Regular if
• L is empty 

• L contains a single string (could be the empty 
string) 

• If L1, L2 are regular, then L= L1 ∪ L2 is regular 

• If L1, L2 are regular, then L= L1 L2 is regular 

• If L is regular, then L* is regular

2



C
S 

37
4

Unbounded vs. Infinite
• Why do we need bullet 5? 

• Why can’t we say that L* is the infinite union of {ε} 
∪ L ∪ LL ∪ LLL ∪…

• Recursive definitions: at every branch of recursion we 
need to reach a base case in finite number of steps.

• We can invoke the union rule for any integer n number 
of steps

• infinity is not a number! I can only produce infinite sets 
by an operation like the *.

3



C
S 

37
4

Complexity of Languages

Central Question: How complex an algorithm is needed 
to compute (aka decide) a language? How much 

memory do I need? 

Today: a simple class of algorithms, that are fast and 
can be implemented using minimal hardware 

Finite State Machines -Deterministic Finite Automata (FSM-
DFA) 

DFAs around us: Vending machines, Elevators, Digital watch 
logic, Calculators, Lexical analyzers (part of program 

compilation), …4



C
S 

37
4

Multiple of 5
One

5

• Only one variable, rem, which represents the remainder of the part of the 
string I read so far when I divided by 5. 

• Could do long division, keep the intermediate results in an array but I don’t want to
spend that much memory!



C
S 

37
4

Multiple of 5
m

6

m0=2m if I see “0” next
m1=2m+1 if I see “1” next

• If I know the remainder for m mod 5, and I read one more bit 
then line 3 tells me what the new remainder is (either m0 or m1)



C
S 

37
4

Multiple of 5
• Important feature of algorithm: Aside from variable 

i which counts the input bits and is necessary to 
read input, I only have one variable rem, which 
takes only a small (5) number of values.  

• Streaming algorithm : Data flies by! Once w[i] is 
gone, it is gone forever.  

• Variable has a very small number of states, which I 
am able to specify at compile time. Very small 
amount of memory! 

7



C
S 

37
4

finite writable 
memory (state)

DFA (a.k.a. FSM)
check if binary input is a multiple of 5

next input 
symbol 
fed here

output bit 
for the 

input so 
far

store x mod 5 here 
(initial value “null”). 

output bit indicates if 
it is 0.

next-state 
look-up 
table

calculate x’ mod 5 from  
x mod 5 and input bit b, 

 where x’ = 2x + b

8



C
S 

37
4

“Lookup” table

• q encapsulates the state of the algorithm

• Takes a small amount of values, which I know up front (e.g. q is 
a number between 1 and 4). Unbounded, not infinite!

• Depending on the character I read at position i, I change my 
state with function called delta (δ).

• I have a hardcoded array A and based on what the state is 
when I finish reading the string, I output the value of the array.



C
S 

37
4

10

“Lookup” table

Instead of doing arithmetic at all, I could just hard code this lookup table into 
the code and simply do a lookup  

only one 
accepting 
state!



C
S 

37
4

• Algorithm or Machine? Algorithm is a Machine!! 

• Once you program the machine, you don’t have to 
monitor it. It runs AUTOMATICALLY (Automaton…)

DFA (a.k.a. FSM)

11



C
S 

37
4

DFA (a.k.a. FSM)

12

0 1
0 1 3

0 1
1

0 1

2

41
0 1

0

0

•Equivalent view as a graph!



C
S 

37
4

input 
bit

current 
state

next 
state

0 0 0
1 0 1
0 0 2
1 2 0
0 0 0
1 0 1
0 1 2
1 2 0

Example: check if input 01010101 is a multiple of 5
DFA (a.k.a. FSM)

13

0 1
0 1 3

0 1
1

0 1

2

41
0 1

0

0



C
S 

37
4

input 
bit

current 
state

next 
state

0 0 0
1 0 1
0 0 2
1 2 0
0 0 0
1 0 1
0 1 2
1 2 0

check if input (MSB first) is a multiple of 5
DFA (a.k.a. FSM)

How to fully specify a DFA (syntax): 
FINITE Alphabet: Σ  
FINITE Set of States: Q 
Start state: s ∈ Q 
Set of Accepting states:  A ⊆ Q 
Transition Function: δ : Q × Σ → Q 

14

�(q, a) = (2q + a)mod5



C
S 

37
4

3 equivalent ways to specify a FSM:
DFA (a.k.a. FSM)

15

1) 2)

3)

0 1
0 1 3

0 1
1

0 1

2

41
0 1

0

0

�(q, a) = (2q + a)mod5
Together with a description of what are the states and what are the accepting states



C
S 

37
4

How to interpret these functions?

M = (Σ, Q, δ, s, F) 

• δ*(q,w) be the state M reaches starting from a state 
q ∈ Q , on input w ∈ Σ*

• Recursive definition?

• What are the cases going to be?

16



C
S 

37
4

M = (Σ, Q, δ, s, F) 

• δ*(q,w) be the state M reaches starting from a state 
q ∈ Q , on input w ∈ Σ*

• Formally,  

17

• δ*(q,w) = q  if w=ε

• δ*(q,w) = δ*(δ(q,a), x)  if w=ax

recursion!

Behavior of a DFA on an input



C
S 

37
4

Behavior of a DFA on an input
δ*(0,01001) = ? 

δ*(0,ε) = ? 

δ*(0,010) = ? 

δ*(2,01) = ?

18

4

0

2

4

0 1
0 1 3

0 1
1

0 1

2

41
0 1

0

0



C
S 

37
4

Behavior of a DFA on an input
δ*(0,01001) = 4 

• Specify a walk in the graph 

• Best represented as  

19

0 1
0 1 3

0 1
1

0 1

2

41
0 1

0

0

0
0

0
1

1
0

2
0

4
1

4



C
S 

37
4

20

1

0 0

s t
1

 Alphabet: Σ ={0,1}  
Set of States: Q ={s,t} 
Start state: s ∈ Q 
Accepting state:  t ∈ Q 
Transition Function: δ : Q × Σ → Q
 δ(s,0)=s, δ(s,1)=t, δ(t,0)=t, δ(t,1)=s

Question: what is L(M)?
Answer: strings with odd number of ones!

Example:  What strings does this 
machine accept?



C
S 

37
4

Input Accepted by a DFA
We say that M accepts w ∈ Σ* if M, on input w, 

starting from the start state s, reaches a final state 

i.e., δ*(s,w) ∈ F 

L(M) is the set of all strings accepted by M 

i.e., L(M) = { w | δ*(s,w) ∈ F }

Called the language accepted by M

21



C
S 

37
4

Input Accepted by a DFA
What kind of language is accepted by FSM? 

- Automatic (it is an automaton after all)! 

- We will use: REGULAR (not a coincidence) 

Language is regular iff 

-it is accepted by a finite state automaton 

-it is described by a regular expression

22



C
S 

37
4

Warning

“M accepts language L”   does not mean simply 
that M accepts each string in L. 

“M accepts language L” means 
M accepts each string in L  and no others! 

L(M) = L

23



C
S 

37
4

Reject state

Examples:  What is L(M) ?

1

0,10

0 1

0 1

2

abbreviation

B

0 1A 2B B

B

A

4

A

3 A

B
A

A AB ABB ABBA

0 1
0

3

1

2
0

1

0

0
1 1

odd #0 and odd #1
0*11*

(A+B)*ABBA
24



Building DFAs

25



C
S 

37
4

State = Memory
First, decide on Q 

The state of a DFA is its entire memory of what has 
come before 

The state must capture enough information to 
complete the computation on the suffix to come 

When designing a DFA, think “what do I need to 
know at this moment?”  That is your state.

26



C
S 

37
4

Construction Exercise
L(M) = {w | w contains 00 }

Is it regular?? 

What should be in the memory?  

27

s a

(0+1)*00(0+1)* 



C
S 

37
4

Construction Exercise
L(M) = {w | w contains 00 }

Is it regular?? 

What should be in the memory?  

28

1

(0+1)*00(0+1)* 

s a



C
S 

37
4

Construction Exercise
L(M) = {w | w contains 00 }

Is it regular?? 

What should be in the memory?  

29

1

1
0

(0+1)*00(0+1)* 

s a



C
S 

37
4

Construction Exercise
L(M) = {w | w contains 00 }

Is it regular?? 

What should be in the memory?  

30

1

0

1
0

(0+1)*00(0+1)* 

bs a



C
S 

37
4

Construction Exercise
L(M) = {w | w contains 00 }

Is it regular?? 

What should be in the memory?  

31

1

0

1
0

(0+1)*00(0+1)* 

bs a

0,1



C
S 

37
4

Construction Exercise

- s : I haven’t seen a 00, previous symbol was not 0 

- a: I haven’t seen a 00, previous symbol was a 0 

- b: I have seen a 00 

32

1

0

1
0

bs a

0,1

L(M) = {w | w contains 00 }

• We have exhausted of all strings. Either accepted (with 00) or not.


