T and NP

P=NP?

 We talked about machines that accept sets of strings

 Best to think of a language in terms of a YES/NO
guestion

. P = YES/NO questions that can be answered in
polynomial time in input size (algorithm)

e.qg. is this array sorted? O(n) time

is N prime? (log N bits input)

CS 374

CS 374

P=NP?

. NP= Non-deterministic Polynomial Time

. Something to do with Non-Deterministic TM

 YES/No problems where YES instance can be verified
N polynomial time

e.g. is this array sorted? verify by running O(n) algorithm

or something not so clear how to find from scratch: does this
graph have Hamiltonian cycle?

We do not know if thisis in P,

Can check short proof = Non-deterministic choices.

CS 374

P=NP?

Asymmetry: how can | convince you that there is
no Hamiltonian cycle”

we don’t know! check all n vertex cycles.

NP only requires that if the answer is YES | can convince
you in polynomial time.

It answer is NO : ummm...

It problem is in P?

CS 374

P=NP?

Million Dollar guestion: P=NP?

of course not!
Clay math institute: 7 most important problems.

P = NP is number 1. ($1M)

it would imply: If there Is a short proof, there is an
easy way to discover it... Trivialize math.

Problem in NP ‘

. Problem in NP. It is the "worst problem”™ in NP

CS 374

Problem in NP ‘

. Problem in NP. It is the "worst problem”™ in NP

§
't
? —
1 o 19 1\

NN
0 O

XAY

— -
) >—xw
x— >0—-x

X
Y

= =

CS 374

CS 374

Problem in NP

Problem in NP. It is the "worst problem”™ in NP

Q“ S
ﬁg/_ E . >O—
\1 1 1%\ > ~) -
\ NN N : >0
0 0 O

Circuit Satistiablility: Given a boolean circuit are there inputs

the produce output 17?
Obvious O(2"n) algorithm, brute force
Best known algorithm O(2n/n)

CS 374

\

Problem in NP

Problem in NP. It is the "worst problem”™ in NP

"
A

)
|/

>0

-

1\1‘\1\
\

\

NN\
0 O

0

If | can solve CircuitSat

has a poly

>0

in P, then every other problem in NP

nomial time algorithm!

_evin, Cook

CS 374

10

Cook Levin

Cook-Levin Theorem:
CircuitSAT is NP-hard.

Cook-Levin Theorem:
If CircuitSAT in P then P=NP

CS 374

11

Cook Levin Proof? Non-
deterministic TMs

oroof tape p\T input tape
| o |

work tape

Verity if input is YES in p time = is there a string to put in the
oroof tape to make this TM to accept in poly time”?

Build a circuit that simulates that TM

> (CS 374

Cook Levin Proof? Non-
deterministic TMs

Cook Levin Proof? Non-
deterministic TMs

s there a proof

fix
iINput

t=0

t=0

t=0 |

CS 374

13

0/

CS 374

14

Mickey Mouse Diagram

Problem is NP hard if a poly time algorithm for that problem
implies P=NP.

23
v NP-complete

CS 374

15

CircuitSAT NP Hard

Every NDTM that accepts some language, equivalent to a
Circult,
If | can solve CircuitSat in poly time, then | can solve any othel
poroblem in NP

Step 1: Build giant circuit
Step 2: pass it to the CircuitSAT algorithm

Step 3: profit

CS 374

16

Mickey Mouse Diagram

CS 374

17

NP hardness

Assume P=NP

Then NP hard means no polynomial time algo!

—xample of reduction: formula SAT

The only problem we know is NP hard is CircuitSAT,
so let’'s reduce from that.

CS 374

18

Formula SAT

Input: boolean formula
Want to decide if there is an assignment to the
variables that make it TRUE

(avbVvcvd)e (bAS)V(@a=>d)V(c#aAb)),

Assume, towards contradiction that SAT can
be solved in poly time

CS 374

19

Formula SAT

| am given input a circuit and | want to produce an
equivalent formula.

How is the circuit given?

Name the inputs, wires, output.

/)

X
4 {>Oy—2

CS 374

20

Formula SAT

| am given input a circuit and | want to produce an
equivalent formula.
How is the circuit given?
Name the inputs, wires, output.

xl \ yl y4

>O_ ys
: -
O
X ‘
—— >0
X, >o -

(Y1=X1 AX)AN(Y2=X) A(Yy3=x3AY2))A(Ya=Yy1VX3) A
(Ys=X)AYe=Xs)AN(Y7=Y3VYs)A(EZ=Y4ANYy; ANYe) N2

NP hardness

» There are inputs to the circuit that force z t be true if =
and only it there are values to these variables that
make the expression true

. | have reduced CircuitSat to formula SAT

. Proof? 2 stages

 Stage 1: Suppose | can satisfy the circuit, then | can
find corresponding values for all the wires, same
values satisty the formula

o Stage 2: Suppose | can satisfty the formula, | can pull
those values to the wires

CS 374

21

CS 374

22

NP hardness

Poly time reduction from CircuitSALT.

If there is a poly time algorithm to solve formula
SAT, then there is poly time algorithm to solve

K

CircuitSAT

CIRCUITSAT

transform

Boolean
circuit

time

O

>

Boolean
formula

SAT

TRUE TRUE
® is K is
satisfiable satisfiable
FALSE FALSE
>
® is not K is not

satisfiable

satisfiable

CS 374

23

NP hardness

Poly time reduction from CircuitSALT.

If there is a poly time algorithm to solve formula
SAT, then there is poly time algorithm to solve
CircuitSAT

CiRcUITSAT(K):
transcribe K into a boolean formula ®

return SAT(®) ((Magic!’))

TCIRCUITSAT(n) < O(n) + TSAT(O(n))

CS 374

24

How to prove NP hardness
To prove X is NP-hard:

Step 1: Pick a known NP-hard problem Y

Step 2: Assume for the sake of argument, a
polynomial time algorithm for X.

Step 3: Derive a polynomial time algorithm for Y,
using algorithm for X as subroutine.

Step 4: Contradiction = Reduce FROM the problem
| kKnow about

Reduce Y to X TO the problem
| am curious about

NP hardness ‘

. Library of NP-hard problems

SAT

fe

CS 374

25

3SAT ‘

. L ook at boolean formulas in CNF

clause
* — -—
(avbVvcvd)A(bvevd)A(@vevd)A(aVb)

Parse tree:

3SAT: exactly three
/N iterals per clause!

SN

NNV N\
/1N

a b c

CS 374

26

NP hardness

Poly time reduction from CircuitSALT.

ve formula
m to solve

It there is a poly time algorithm to so
3SAT, then there is poly time algorith
CircuitSAT

CIRCUITSAT

TRUE

TRUE

satisfiable

—>| inO(n)

Boolean
fime

circuit Boolean FALSE

Kis
satisfiable

FALSE

formula .
@ is not

satisfiable

CS 374

K is not
satisfiable

1. Make sure every AND and or gate in K has exactly two inputs. If any gate has k > 2

inputs, replace it with a binary tree of k — 1 two-input gates. Call the resulting
circuit K’.

2. Transcribe K’ into a boolean formula ®, with one clause per gate, exactly as in our
previous reduction to SAT.

3. Replace each clause in ®; with a CNF formula. There are only three types of clauses
in ®,, one for each type of gate in K:

a=bAc — (avbVé)A(avb)A(aVve)
a=bVc — (@avbVvec)A(aVb)A(aVi)

a=b — (avVb)A(aVvb)

Call the resulting CNF formula &,.

4. Replace each clause in ®, with a 3CNF formula. Every clause in ®, has at most three
literals. We can keep the three-literal clauses as-is. We expand each two-literal
clause into two three-literal clauses by introducing a new variable. Finally, we

expand any one-literal clause into four three-literal clauses by introducing two
new variables.

aVb— (avbVx)A(aVbVx)
a— (aVxVy)AlavxVy)A(lavxVy)A(avxVy)

Call the final 3CNF formula &,.

For example, if we start with the same example circuit we used earlier, we obtain the
following 3CNF formula 5.

Call the final 3CNF formula &5.

For example, if we start with the same example circuit we used earlier, we obtain the
following 3CNF formula ®,.

(r1VX VX)) A VX VZ) A VX1 VZD) A Vxa V) A1 VXaVzy
AN(Y2VxaVz3) A2V xaV23) AV VXaV2) ANy VXV 2z,)
A(y3VXx3VY)A(Y3Vx3Vzs)A(Y3Vx3V25)A(Y3VyaVze) A(Y3V Y2V 26)
ANYaVY1Vx))A(yaVxaVz))A(yaVXaV2)) A(ya VY1 Vzg) A(yaVy1Vag)
A(YsVxaVzg) A(ysVxaV2g) A(YsVXaVz0) A(Ys VXV 2)

AYeVxsV211) A(YeV X5 V211) A(Ye V X5V 212) A(Ye V X5 V 212)

A7V ysVys)A(y7VYsV2zi3) A(y7VY3VZ13) A(y7VYsV21a) A(y7V Y5V 214)
ANYgVYaVY7)AN(YegVysV2is) AN(YgVyaV215) A(Yg VY7 V216) A(YgV Y7V Z16)
AN(YoVYsVY6)A(YoVYsV217) A(YoVygVZ17) A(Yo VY6 V218) A(YoV Y6V 218)
A (Yo V219V 220) A(YoVZ19V220) A(Y9 V219 V220) A(Y9 V219V 22)

Although this formula may look a lot more ugly and complicated than the original circuit
at first glance, it’s actually only a constant factor larger—every binary gate in the original

