
Understanding
Computation

1

C
S

37
4

Mathematics & Computation
-Mathematics has been around for a long time
as a method of computing.
-Efforts to find “canonical” way of computations.
-“Machines” have helped with calculations.

2

Can we use machines to
reason too?

Formal Logic: Reasoning made
into a calculation

calculemus!

C
S

37
4

Mathematics & Computation
Formal systems based on axioms and logic: for machines &

modern mathematicians

Foundational problem:

Formalism or Intuitionalism? Are mathematics a formal language or a
“fairy tale” with numbers that exist in human mind only?

Formalists: How to choose one’s axioms?
They should not give rise to contradictions!

Early 1900s: Crisis in mathematical foundations

Contradictions discovered while attempting to formalize notions
involving infinite sets

3

C
S

37
4

David Hilbert

4

Proposed solution to the foundational crisis of mathematics,
 when attempts to clarify the foundations of mathematics
 were found to suffer from paradoxes and inconsistencies.

As a solution, Hilbert proposed to ground all existing
 theories to a finite, complete set of axioms, and provide a
 proof that these axioms were consistent.

He proposed that the consistency of more complicated systems, such as real
analysis, could be proven in terms of simpler systems.

 Ultimately, consistency of all mathematics could be reduced to basic arithmetic.

https://en.wikipedia.org/wiki/Foundational_crisis_of_mathematics
https://en.wikipedia.org/wiki/Foundations_of_mathematics
https://en.wikipedia.org/wiki/Axiom
https://en.wikipedia.org/wiki/Consistent
https://en.wikipedia.org/wiki/Real_analysis
https://en.wikipedia.org/wiki/Arithmetic

C
S

37
4

Hilbert’s Program

5

• A formalization of all mathematics; in other words all mathematical
statements should be written in a precise formal language, and manipulated
according to well defined rules.

• Completeness: a proof that all true mathematical statements can be proved
in the formalism.

• Consistency: a proof that no contradiction can be obtained in the formalism
of mathematics. This consistency proof should preferably use only reasoning
about finite mathematical objects.

.

C
S

37
4

Mathematics & Computation

Mechanized math

Beyond just philosophical interest!

Can resolve stubborn open problems

Replace mathematicians with mathe-machines!

6

C
S

37
4

Every even number > 2 is 
 the sum of two primes

Goldbach’s Conjecture

7

Letter from Goldbach to Euler
dated 7 June 1742

C
S

37
4

Program Collatz (n:integer)
 while n > 1 {
	 	 if Even(n) then n ≔ n/2
	 else n ≔ 3n+1
	 }

Collatz Conjecture

Conjecture: Collatz(n) halts for every n > 0

8

C
S

37
4

Kurt Gödel

9

• German logician, at age 25 (1931) proved:
1) “No matter what (consistent) set of axioms are used, a rich system

will have true statements that can’t be proved”

2) “A system powerful enough to encode addition and multiplication of
integers can not prove its own consistency, so it certainly cannot be
used to prove the consistency of anything stronger with certainty”

 Hilbert’s Program can’t work!

• Shook the foundations of
– mathematics
– philosophy
– science
– everything

C
S

37
4

Alan Turing
• British mathematician

– cryptanalysis during WWII

– arguably, father of AI, CS Theory

– several books, movies

• Mathematically defined computation

– Invented Turing Machines at 23 (1936). Turing
machines can compute everything that is computable.
He proved that The Halting Problem has no general
algorithm (it is not possible to decide whether a turing
machine will ever halt)10

C
S

37
4

Halting Problem
• Given program P, input w:

11

Will P(w) halt?

w P

C
S

37
4

• Suppose halting problem had an algorithm...

Program P()
	 n ≔ 4
	 forever:
	 	 if found-two-primes-that-sum-to(n)
	 	 then n ≔ n + 2
	 	 else halt

Why would we care about  
the Halting Problem?

12

Does P halt ? ← Solves Goldbach conjecture!

C
S

37
4

Why would we care about  
the Halting Problem?

Does Find-proof halt on w? ≡ Is w a provable theorem?

13

Program Find-proof(w)

p ≔ empty-string
forever
	 p ≔ successor(p)
 if Verify-proof(w,p)
 then halt

w

C
S

37
4

Alas!

There is no program that solves the Halting Problem!  
No use trying to find one!

How can there be problems that can’t be solved?

What is a problem? What is a program?

14

C
S

37
4

Computation

Too restrictive?

Enough to compute functions with longer outputs too:  
P(x,i) outputs the ith bit of F(x)

Enough to model interactive computation too:  
P*(x,state) outputs (y,new_state)

15

P computes F if for every x, P(x) outputs F(x) and halts

Problem: 
To compute a function F that
maps each input (a string) to

an output bit

Program: 
A finitely described process
taking a string as input, and

outputting a bit (or not halting)

C
S

37
4

16

• A program is a finite bit string

• Programs can be enumerated — listed
sequentially — (say, lexicographically) so
that every program appears somewhere in
the list

• The set of all programs is countable.

1 ε
2 0
3 1
4 00
5 01
6 10
7 11
8 000
9 001
10 010
11 011
12 100

Computation
Problem: 

To compute a function F that
maps each input (a string) to

an output bit

Program: 
A finitely described process
taking a string as input, and

outputting a bit (or not halting)

P computes F if for every x, P(x) outputs F(x) and halts

C
S

37
4

17

• A function assigns a bit to each finite string

• Corresponds to an infinite bit string

• The set of all functions is uncountable!

• As numerous as, say, real numbers  
in [0,1]

1 ε 0

2 0 0

3 1 1

4 00 0

5 01 1

6 10 1

7 11 0

8 000 0

9 001 1

10 010 1

11 011 0

12 100 1

Computation
Problem: 

To compute a function F that
maps each input (a string) to

an output bit

Program: 
A finitely described process
taking a string as input, and

outputting a bit (or not halting)

P computes F if for every x, P(x) outputs F(x) and halts

C
S

37
4

18

There are uncountably many
functions!

But only countably many
programs

Almost every function is uncomputable!

Computation
Problem: 

To compute a function F that
maps each input (a string) to

an output bit

Program: 
A finitely described process
taking a string as input, and

outputting a bit (or not halting)

P computes F if for every x, P(x) outputs F(x) and halts

C
S

37
4

Uncomputable Problems
But that doesn’t tell us why some  

interesting problems are uncomputable
If interesting ≡ has a finite description in English, then  

only countably many interesting problems!

Proving that there are uncountably many real numbers:
“Diagonalization” argument by Cantor

Showing Halting Problem to be uncomputable:  
a similar argument (later)

19

Strings

20

C
S

37
4

Why Strings?
• Algorithms manipulate sequences : arrays, lists,

text, graphs..

• All of the inputs and outputs represented by
finite string of symbols.

21

C
S

37
4

Definitions for strings
• alphabet Σ = finite set of symbols
• string = finite sequence of symbols of Σ
• length of a string w is denoted |w|.
• empty string is denoted “ε”.

22

e.g., Σ = {0,1},  
Σ = {α, β, …, ω},  
Σ = set of ascii

characters

|cat|=3|ε| = ?0

Variable conventions (for this lecture)
a, b, c, ... elements of Σ (i.e., strings of length 1)
w, x, y, z, ... strings of length 0 or more
A, B, C,... sets of strings

C
S

37
4

What is a string?
Formally,

• string = ε

• string = ax, where a is an element of Σ and x is a
string.

23

Length of string w is

• |w| = 0 if w= ε

• |w| =1+|x|, if w= ax, where a is an element of Σ and x
is a string.

C
S

37
4

Much ado about nothing

• ε is a string containing no symbols. It is not a set.

• {ε} is a set containing one string: the empty
string ε. It is a set, not a string.

• Ø is the empty set. It contains no strings.

24

C
S

37
4

Concatenation & its properties
• xy denotes the concatenation of strings x and y

(sometimes written x⋅y)

– w⋅z = z if w= ε

– w⋅z = a⋅(x⋅z) if w= ax

We can derive two properties:

• Associative: (uv)w = u(vw) and we write uvw.

• Identity element ε : εw = wε = w (proof follows)
25

C
S

37
4

Inductive proof

26

• Theorem: wε = w
• Proof: By induction

Let w be an arbitrary string.

Assume for all strings x such that |x|<|w| that xε=x (Inductive
Hypothesis).

There are two cases:

-Base case: |w| = 0: i.e., w= ε.  
Then: wε = εε = ε = w ☑

-Inductive step w=ax

Then: wε = (ax)ε = a(xε) = ax = w ☑

C
S

37
4

27

First, mindlessly write the green text.
Then fill in the red text. And then start thinking

C
S

37
4

28

Inductive Definitions

• Often operations on strings are formally defined
inductively

– wR (w reversed) inducting on length

• If |w| = 0, wR = ε

• If |w| ≥ 1, wR = uRa where w = au

– e.g. (cat)R = (c⋅at)R = (at)R⋅c = (a⋅t)R⋅c  
 = (t)R⋅a⋅c = (t⋅ε)R⋅ac = εR⋅tac = tac

a ∈ Σ, u ∈ Σ*
Well-defined:  

|u|<|w|

εR = ε  
(au)R = uRa

