Submission instructions as in previous homeworks.

1 (100 PTS.) Irregularities.
1.A. (25 PTS.) Prove that the following language is not regular by providing a fooling set. You need to prove an infinite fooling set and also prove that it is a valid fooling set. The language is

$$
L=\left\{0^{k} w \bar{w} 1^{k} \mid 0 \leq k \leq 3, w \in\{0,1\}^{+}\right\},
$$

where \bar{w} is the complement bit-wise not operator. Formally, for $w=w_{1} w_{2} \ldots w_{m} \in\{0,1\}^{*}$, we define $\bar{w}=\overline{w_{1}} \overline{w_{2}} \ldots \overline{w_{m}}$, for $\overline{0}=1$ and $\overline{1}=0$.
1.B. (25 PTs.) Same as (A) for the following language. Recall that a run in a string is a maximal nonempty substring of identical symbols. Let L be the set of all strings in $\{0,1\}^{*}$ that do not contain any two distinct runs of 0 s of equal length. As an examples, L :

- contains any string of the form $1^{*} 0^{*} 1^{*}$.
- contains the strings 011001111 and 0000001001000111000010 , and
- does not contain the strings 010,00110110011 and 00001110000.
1.C. (25 PTs.) Suppose you are given two languages L, L^{\prime} where L is not regular, L^{\prime} is regular, and $L \cap L^{\prime}$ is regular. Prove that $L \cup L^{\prime}$ is not regular.

Also, provide a counter-example for the following claim (it can be interpreted as an "inverse" of the above):

Claim: Consider two languages L and L^{\prime}. If L is not regular, L^{\prime} is regular, and $L \cup L^{\prime}$ is regular, then $L \cap L^{\prime}$ is regular.
1.D. (25 PTs.) (Hard^{1}) Same as (A) for $L=\left\{0^{\lceil n \lg n\rceil} \mid n \geq 3\right\}$, where $\lg n=\log _{2} n$.

2 (100 PTS.) Grammar.
Describe a context free grammar for the following languages. Clearly explain how they work and the role of each non-terminal. Unclear grammars will receive little to no credit.
2.A. (50 PTS.) $\left\{a^{i} b^{j} c^{k} d^{\ell} e^{t} \mid i, j, k, \ell, t \geq 0\right.$ and $\left.i+j+k+\ell=t\right\}$.
2.B. (50 PTs.) (Harder.) $L=\left\{w \in\{0,1\}^{*} \mid\right.$ there is a prefix x of w s.t. $\left.\#_{1}(x)>\#_{0}(x)\right\}$.

3 (100 PTs.) As easy as a,b,c.
Let $L=\left\{0^{i} 1^{j} 2^{k} \mid j=i+k\right\}$.
3.A. (40 PTs.) Prove that L is context free by describing a grammar for L.
3.B. (60 PTs.) Prove that your grammar is correct. (One way to do it - show that $L \subseteq L(G)$ and $L(G) \subseteq L$, where G is your grammar from the previous part. This is not the only way.)

[^0]
[^0]: ${ }^{1}$ Don't feel bad if you can not do this part. No hints would be given for this part. We expect most solutions to be IDK for this one.

