1 Let L be an arbitrary regular language.
1.A. Prove that the language $\operatorname{palin}(L)\left\{w \mid w w^{R} \in L\right\}$ is also regular.
1.B. Prove that the language $\operatorname{drome}(L)\left\{w \mid w^{R} w \in L\right\}$ is also regular.

2 Suppose F is a fooling set for a language L. Argue that F cannot contain two distinct string x, y where both are not prefixes of strings in L.
3 Prove that the language $\left\{0^{i} 1^{j} \mid \operatorname{gcd}(i, j)=1\right\}$ is not regular.
4 Consider the language $L=\{w:|w|=1 \bmod 5\}$. We have already seen that this language is regular. Prove that any DFA that accepts this language needs at least 5 states.
5 Consider all regular expressions over an alphabet Σ. Each regular expression is a string over a larger alphabet $\Sigma^{\prime}=\Sigma \cup\{\emptyset$-Symbol, ϵ-Symbol,,$+()$,$\} . We use \emptyset$-Symbol and ϵ-Symbol in place of \emptyset and ϵ to avoid confusion with overloading; technically one should do it with,$+($,$) as well. Let R_{\Sigma}$ be the language of regular expressions over Σ.
5.A. Prove that R_{Σ} is not regular.
5.B. Prove that R_{Σ} is a CFL by giving a CFG for it.

6 Regular languages?
6.A. Prove that the following languages are not regular by providing a fooling set. You need to prove an infinite fooling set and also prove that it is a valid fooling set.
6.A.i. $L=\left\{0^{k} 1^{k} w w \mid 0 \leq k \leq 3, w \in\{0,1\}^{+}\right\}$.
6.A.ii. Recall that a block in a string is a maximal non-empty substring of identical symbols. Let L be the set of all strings in $\{0,1\}^{*}$ that contain two blocks of 0 s of equal length. For example, L contains the strings 01101111 and 01001011100010 but does not contain the strings 000110011011 and 00000000111 .
6.A.iii. $L=\left\{0^{n^{3}} \mid n \geq 0\right\}$.
6.B. Suppose L is not regular. Show that $L \cup L^{\prime}$ is not regular for any finite language L^{\prime}. Give a simple example to show that $L \cup L^{\prime}$ is regular when L^{\prime} is infinite.

7 Describe a context free grammar for the following languages. Clearly explain how they work and the role of each non-terminal. Unclear grammars will receive little to no credit.
7.A. $\left\{a^{i} b^{j} c^{k} d^{\ell} \mid i, j, k, \ell \geq 0\right.$ and $\left.i+\ell=j+k\right\}$.
7.B. $L=\{0,1\}^{*} \backslash\left\{0^{n} 1^{n} \mid n \geq 0\right\}$. In other words the complement of the language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

8 Let $L=\left\{0^{i} 1^{j} 2^{k} \mid k=2(i+j)\right\}$.
8.A. Prove that L is context free by describing a grammar for L.
8.B. Prove that your grammar is correct. You need to prove that if $L \subseteq L(G)$ and $L(G) \subseteq L$ where G is your grammar from the previous part.

Solved problem

9 Let L be the set of all strings over $\{0,1\}^{*}$ with exactly twice as many 0 s as 1 s.
9.A. Describe a CFG for the language L.
(Hint: For any string u define $\Delta(u)=\#(0, u)-2 \#(1, u)$. Introduce intermediate variables that derive strings with $\Delta(u)=1$ and $\Delta(u)=-1$ and use them to define a non-terminal that generates L.)

Solution: $S \rightarrow \varepsilon|S S| 00 S 1|0 S 1 S 0| 1 S 00$
9.B. Prove that your grammar G is correct. As usual, you need to prove both $L \subseteq L(G)$ and $L(G) \subseteq L$.
(Hint: Let $u_{\leq i}$ denote the prefix of u of length i. If $\Delta(u)=1$, what can you say about the smallest i for which $\Delta\left(u_{\leq i}\right)=1$? How does u split up at that position? If $\Delta(u)=-1$, what can you say about the smallest i such that $\Delta\left(u_{\leq i}\right)=-1$?)
Solution: We separately prove $L \subseteq L(G)$ and $L(G) \subseteq L$ as follows:
Claim 3.1. $L(G) \subseteq L$, that is, every string in $L(G)$ has exactly twice as many 0 s as 1 s.
Proof: As suggested by the hint, for any string u, let $\Delta(u)=\#(0, u)-2 \#(1, u)$. We need to prove that $\Delta(w)=0$ for every string $w \in L(G)$.
Let w be an arbitrary string in $L(G)$, and consider an arbitrary derivation of w of length k. Assume that $\Delta(x)=0$ for every string $x \in L(G)$ that can be derived with fewer than k productions. ${ }^{1}$ There are five cases to consider, depending on the first production in the derivation of w.

- If $w=\varepsilon$, then $\#(0, w)=\#(1, w)=0$ by definition, so $\Delta(w)=0$.
- Suppose the derivation begins $S \rightarrow S S \rightarrow^{*} w$. Then $w=x y$ for some strings $x, y \in L(G)$, each of which can be derived with fewer than k productions. The inductive hypothesis implies $\Delta(x)=\Delta(y)=0$. It immediately follows that $\Delta(w)=0 .{ }^{2}$
- Suppose the derivation begins $S \rightarrow 00 S 1 \rightarrow^{*} w$. Then $w=00 x 1$ for some string $x \in L(G)$. The inductive hypothesis implies $\Delta(x)=0$. It immediately follows that $\Delta(w)=0$.
- Suppose the derivation begins $S \rightarrow 1 S 00 \rightarrow^{*} w$. Then $w=1 x 00$ for some string $x \in L(G)$. The inductive hypothesis implies $\Delta(x)=0$. It immediately follows that $\Delta(w)=0$.
- Suppose the derivation begins $S \rightarrow 0 S 1 S 1 \rightarrow^{*} w$. Then $w=0 x 1 y 0$ for some strings $x, y \in L(G)$. The inductive hypothesis implies $\Delta(x)=\Delta(y)=0$. It immediately follows that $\Delta(w)=0$.
In all cases, we conclude that $\Delta(w)=0$, as required.
Claim 3.2. $L \subseteq L(G)$; that is, G generates every binary string with exactly twice as many $0 s$ as $1 s$.
Proof: As suggested by the hint, for any string u, let $\Delta(u)=\#(0, u)-2 \#(1, u)$. For any string u and any integer $0 \leq i \leq|u|$, let $\boldsymbol{u}_{\boldsymbol{i}}$ denote the i th symbol in u, and let $\boldsymbol{u}_{\leq i}$ denote the prefix of u of length i.
Let w be an arbitrary binary string with twice as many 0 s as 1 s. Assume that G generates every binary string x that is shorter than w and has twice as many 0 s as 1 s. There are two cases to consider:
- If $w=\varepsilon$, then $\varepsilon \in L(G)$ because of the production $S \rightarrow \varepsilon$.

[^0]- Suppose w is non-empty. To simplify notation, let $\Delta_{i}=\Delta\left(w_{\leq i}\right)$ for every index i, and observe that $\Delta_{0}=\Delta_{|w|}=0$. There are several subcases to consider:
- Suppose $\Delta_{i}=0$ for some index $0<i<|w|$. Then we can write $w=x y$, where x and y are non-empty strings with $\Delta(x)=\Delta(y)=0$. The induction hypothesis implies that $x, y \in L(G)$, and thus the production rule $S \rightarrow S S$ implies that $w \in L(G)$.
- Suppose $\Delta_{i}>0$ for all $0<i<|w|$. Then w must begin with 00 , since otherwise $\Delta_{1}=-2$ or $\Delta_{2}=-1$, and the last symbol in w must be 1 , since otherwise $\Delta_{|w|_{-1}}=-1$. Thus, we can write $w=00 x 1$ for some binary string x. We easily observe that $\Delta(x)=0$, so the induction hypothesis implies $x \in L(G)$, and thus the production rule $S \rightarrow 00 S 1$ implies $w \in L(G)$.
- Suppose $\Delta_{i}<0$ for all $0<i<|w|$. A symmetric argument to the previous case implies $w=1 x 00$ for some binary string x with $\Delta(x)=0$. The induction hypothesis implies $x \in L(G)$, and thus the production rule $S \rightarrow 1 S 00$ implies $w \in L(G)$.
- Finally, suppose none of the previous cases applies: $\Delta_{i}<0$ and $\Delta_{j}>0$ for some indices i and j, but $\Delta_{i} \neq 0$ for all $0<i<|w|$.

Let i be the smallest index such that $\Delta_{i}<0$. Because Δ_{j} either increases by 1 or decreases by 2 when we increment j, for all indices $0<j<|w|$, we must have $\Delta_{j}>0$ if $j<i$ and $\Delta_{j}<0$ if $j \geq i$.

In other words, there is a unique index i such that $\Delta_{i-1}>0$ and $\Delta_{i}<0$. In particular, we have $\Delta_{1}>0$ and $\Delta_{|w|_{-1}}<0$. Thus, we can write $w=0 x 1 y 0$ for some binary strings x and y, where $|0 x 1|=i$.

We easily observe that $\Delta(x)=\Delta(y)=0$, so the inductive hypothesis implies $x, y \in L(G)$, and thus the production rule $S \rightarrow 0 S 1 S 0$ implies $w \in L(G)$.
In all cases, we conclude that G generates w.
Together, Claim 1 and Claim 2 imply $L=L(G)$.
Rubric: 10 points:

- part $(\mathrm{a})=4$ points. As usual, this is not the only correct grammar.
- part $(\mathrm{b})=6$ points $=3$ points for $\subseteq+3$ points for \supseteq, each using the standard induction template
(scaled).

[^0]: ${ }^{1}$ Alternatively: Consider the shortest derivation of w, and assume $\Delta(x)=0$ for every string $x \in L(G)$ such that $|x|<|w|$.
 ${ }^{2}$ Alternatively: Suppose the shortest derivation of w begins $S \rightarrow S S \rightarrow{ }^{*} w$. Then $w=x y$ for some strings $x, y \in L(G)$. Neither x or y can be empty, because otherwise we could shorten the derivation of w. Thus, x and y are both shorter than w, so the induction hypothesis implies.... We need some way to deal with the decompositions $w=\varepsilon \bullet w$ and $w=w \bullet \varepsilon$, which are both consistent with the production $S \rightarrow S S$, without falling into an infinite loop.

