
HW 4 Due on Wednesday, October 11, 2017 at 10am

CS/ECE 374: Algorithms & Models of Computation, Fall 2017 Version: 1.1

Submission instructions as in previous homeworks.

1 (100 pts.) Bogi sort.
Consider the following exciting sorting algorithm. For simplicity we will assume that n is always some

positive power of 2 (i.e. n = 2i, for some positive integer i > 0).

bogiSort(A[0 .. n− 1]) :
if n ≤ 16 then

InsertionSort
(

A
[
0 .. n− 1

])
else /* n > 16 */

for i← 0 to 2 do
for j ← 2 down to i do

bogiSort
(

A
[
jn/4 . . . (j + 2)n/4− 1

])
1.A. (25 pts.) Prove that bogiSort actually sorts its input. (You can assume that all the numbers in

the array A are distinct.)
1.B. (25 pts.) State a recurrence (including the base case(s)) for the number of comparisons executed

by bogiSort.
1.C. (25 pts.) Solve the recurrence, and prove that your solution is correct. (Your proof should be self

contained and not use off the shelf tools like the master theorem [puke]).
1.D. (25 pts.) Show that the number of swaps executed by bogiSort is at most

(
n
2

)
.

2 (100 pts.) Pick it up.
You are given an array A with n distinct numbers in it, and another array B of ranks i1 < i2 < . . . < ik.

An element x of A has rank u if there are exactly u− 1 numbers in A smaller than it. Design an algorithm
that outputs the k elements in A that have the ranks i1, i2, . . . , ik.

2.A. (20 pts.) As a warm-up exercise describe how to solve this problem in O(nk) time.
2.B. (60 pts.) Describe a O(n log k) recursive algorithm for this problem. Prove the bound on the running

time of the algorithm.
2.C. (20 pts.) Show, that if this problem can be solved in T (n, k) time, then one can sort n numbers in

O(n+T (n, n)) time (i.e., give a reduction). Provide a strong intuitive reason why the above problem
can not be solved in time faster than O(n log k).

3 (100 pts.) Is good???
You are given an array A of n numbers (not necessarily sorted). You are given a function isGood(x),

which can tell you for a number x if is good or not. A number x is good if it is at most some unknown
value α (i.e., x ≤ α). It is bad if x > α. Think about calling isGood as being an expensive operation,
that your algorithm should perform as little as possible.

1

https://courses.engr.illinois.edu/cs374/fa2017/hw/hw_00.pdf

3.A. (20 pts.) (Easy.) Show how to compute all the numbers of A that are good using O(log n) calls
to isGood. What is the running time of your algorithm. (Here, the solution should be short and
simpler than what follows. (Here, short means a few lines.)

3.B. (40 pts.) Show how to find all the elements of A that are good using O(log n) calls to isGood and
with total running time O(n). (The solution here should be simpler than the algorithm in (C)).

3.C. (40 pts.) isGood turns out to be better than good! Given a set Y of numbers, where |Y | ≤ k, the
generalized isGood(Y), returns to you (in a single call) for each number of Y whether it is good
or not. As a function of n and k describe an algorithm that (asymptotically) performs the minimal
number of calls to the improved isGood. For full credit your algorithm should be as fast as possible.
What is the running time of your algorithm? State the recurrences you used to derive your bounds.
(Hint: Look on other problems in this homework.)

2

