
HW 4: Extra problems Instructor: Sariel Har-Peled

CS/ECE 374: Algorithms & Models of Computation, Fall 2017 Version: 1.1

1 Problem 9 in Jeff’s note on counting inversions. This is also a solved problem in Kleinberg-Tardos book.
This is the simpler version of the solved problem at the end of this home work.

2 We saw a linear time selection algorithm in class which is based on splitting the array into arrays of 5
elements each. Suppose we split the array into arrays of 7 elements each. Derive a recurrence for the
running time.

3 Suppose we are given n points (x1, y1), (x2, y2), . . . , (xn, yn) in the plane. We say that a point (xi, yi)
in the input is dominated if there is another point (xj , yj) such that xj > xi and yj > yi. Describe an
O(n log n) time algorithm to find all the undominated points in the given set of n points.

4 Solve some recurrences in Jeff’s notes.

5 Suppose we have a stack of n pancakes of different sizes. We want to sort the pancakes so that the smaller
pancakes are on top of the larger pancakes. The only operation we can perform is a flip - insert a spatula
under the top k pancakes, for some k between 1 and n, and flip them all over.

5.A. Describe an algorithm to sort an arbitrary stack of n pancakes and give a bound on the number of
flips that the algorithm makes. Assume that the pancake information is given to you in the form of
an n element array A. A[i] is a number between 1 and n and A[i] = j means that the j’th smallest
pancake is in position i from the bottom; in other words A[1] is the size of the bottom most pancake
(relative to the others) and A[n] is the size of the top pancake. Assume you have the operation
Flip(k) which will flip the top k pancakes. Note that you are only interested in minimizing the
number of flips.

5.B. Suppose one side of each pancake is burned. Describe an algorithm that sorts the pancakes with the
additional condition that the burned side of each pancake is on the bottom. Again, give a bound
on the number of flips. In addition to A, assume that you have an array B that gives information
on which side of the pancakes are burned; B[i] = 0 means that the bottom side of the pancake at
the i’th position is burned and B[i] = 1 means the top side is burned. For simplicity, assume that
whenever Flip(k) is done on A, the array B is automatically updated to reflect the information on
the current pancakes in A.

No proof of correctness necessary.

6 Suppose you are given k sorted arrays A1, A2, . . . , Ak each of which has n numbers. Assume that all
numbers in the arrays are distinct. You would like to merge them into single sorted array A of kn
elements. Recall that you can merge two sorted arrays of sizes n1 and n2 into a sorted array in O(n1+n2)
time.

6.A. Use a divide and conquer strategy to merge the sorted arrays in O(n log k) time. To prove the
correctnes of the algorithm you can assume a routine to merge two sorted arrays.

1



6.B. In MergeSort we split the array of size N into two arrays each of size N/2, recursively sort them
and merge the two sorted arrays. Suppose we instead split the array of size N into k arrays of size
N/k each and use the merging algorithm in the preceding step to combine them into a sorted array.
Describe the algorithm formally and analyze its running time via a recurrence.

7 7.A. Describe an algorithm to determine in O(n) time whether an arbitrary array A[1..n] contains more
than n/4 copies of any value.

7.B. Describe and analyze an algorithm to determine, given an arbitrary array A[1..n] and an integer k,
whether A contains more than k copies of any value. Express the running time of your algorithm as
a function of both n and k.

Do not use hashing, or radix sort, or any other method that depends on the precise input
values.

8 Suppose we are given two sets of n points, one set {p1, p2, . . . , pn} on the line y = 0 and the other
set {q1, q2, . . . , qn} on the line y = 1. Consider the n line segments connecting each point pi to the
corresponding point qi. Describe and analyze a divide-and-conquer algorithm to determine how many
pairs of these line segments intersect, in O(n log n) time. See the example below.

q1 q4 q7 q3q5 q2 q6

p1 p4p7 p3 p5p2p6
Seven segments with endpoints on parallel lines, with 11 intersecting pairs.

Your input consists of two arrays P [1 .. n] and Q[1 .. n] of x-coordinates; you may assume that all 2n of
these numbers are distinct. No proof of correctness is necessary, but you should justify the running time.
Solution: We begin by sorting the array P [1 .. n] and permuting the array Q[1 .. n] to maintain correspon-
dence between endpoints, in O(n log n) time. Then for any indices i < j, segments i and j intersect if
and only if Q[i] > Q[j]. Thus, our goal is to compute the number of pairs of indices i < j such that
Q[i] > Q[j]. Such a pair is called an inversion.
We count the number of inversions in Q using the following extension of mergesort; as a side effect, this
algorithm also sorts Q. If n < 100, we use brute force in O(1) time. Otherwise:

• Recursively count inversions in (and sort) Q[1 .. bn/2c].
• Recursively count inversions in (and sort) Q[bn/2c+ 1 .. n].
• Count inversions Q[i] > Q[j] where i ≤ bn/2c and j > bn/2c as follows:

– Color the elements in the Left half Q[1 .. n/2] bLue.
– Color the elements in the Right half Q[n/2 + 1 .. n] Red.
– Merge Q[1 .. n/2] and Q[n/2 + 1 .. n], maintaining their colors.
– For each blue element Q[i], count the number of smaller red elements Q[j].

The last substep can be performed in O(n) time using a simple for-loop:

2



CountRedBlue(A[1 .. n]):
count← 0
total← 0

for i← 1 to n
if A[i] is red

count← count + 1
else

total← total + count
return total

In fact, we can execute the third merge-and-count step directly by modifying the Merge algorithm,
without any need for “colors”. Here changes to the standard Merge algorithm are indicated in red.

MergeAndCount(A[1 .. n],m):
i← 1; j ← m+ 1; count← 0; total← 0

for k ← 1 to n
if j > n

B[k]← A[i]; i← i+ 1; total← total + count
else if i > m

B[k]← A[j]; j ← j + 1; count← count + 1
else if A[i] < A[j]

B[k]← A[i]; i← i+ 1; total← total + count
else

B[k]← A[j]; j ← j + 1; count← count + 1

for k ← 1 to n
A[k]← B[k]

return total

We can further optimize this algorithm by observing that count is always equal to j − m − 1. (Proof:
Initially, j = m+ 1 and count = 0, and we always increment j and count together.)

MergeAndCount2(A[1 .. n],m):
i← 1; j ← m+ 1; total← 0

for k ← 1 to n
if j > n

B[k]← A[i]; i← i+ 1; total← total + j − m − 1
else if i > m

B[k]← A[j]; j ← j + 1
else if A[i] < A[j]

B[k]← A[i]; i← i+ 1; total← total + j − m − 1
else

B[k]← A[j]; j ← j + 1

for k ← 1 to n
A[k]← B[k]

return total

The modified Merge algorithm still runs in O(n) time, so the running time of the resulting modified
mergesort still obeys the recurrence T (n) = 2T (n/2) +O(n). We conclude that the overall running time
is O(n log n), as required.

3



Rubric: 10 points = 2 for base case + 3 for divide (split and recurse) + 3 for conquer (merge and count)
+ 2 for time analysis. Max 3 points for a correct O(n2)-time algorithm. This is neither the only way to
correctly describe this algorithm nor the only correct O(n log n)-time algorithm. No proof of correctness
is required.

9 Consider the following restricted variant of the Tower of Hanoi puzzle. The pegs are numbered 0, 1, and
2, and your task is to move a stack of n disks from peg 1 to peg 2. However, you are forbidden to move
any disk directly between peg 1 and peg 2; every move must involve peg 0.
Describe an algorithm to solve this version of the puzzle in as few moves as possible. Exactly how many
moves does your algorithm make?

10 Consider the following cruel and unusual sorting algorithm.

Cruel(A[1 .. n]):
if n > 1

Cruel(A[1 .. n/2])
Cruel(A[n/2 + 1 .. n])
Unusual(A[1 .. n])

Unusual(A[1 .. n]):
if n = 2

if A[1] > A[2] the only comparison!
swap A[1]↔ A[2]

else
for i← 1 to n/4 swap 2nd and 3rd quarters

swap A[i+ n/4]↔ A[i+ n/2]

Unusual(A[1 .. n/2]) // recurse on left half
Unusual(A[n/2 + 1 .. n]) // recurse on right half
Unusual(A[n/4 + 1 .. 3n/4]) // recurse on middle half

Notice that the comparisons performed by the algorithm do not depend at all on the values in the input
array; such a sorting algorithm is called oblivious. Assume for this problem that the input size n is
always a power of 2.

10.A. Prove by induction that Cruel correctly sorts any input array.
(
Hint: Consider an array that

contains n/4 1s, n/4 2s, n/4 3s, and n/4 4s. Why is this special case enough? What does Unusual
actually do?

)
10.B. Prove that Cruel would not correctly sort if we removed the for-loop from Unusual.
10.C. Prove that Cruel would not correctly sort if we swapped the last two lines of Unusual.
10.D. What is the running time of Unusual? Justify your answer.
10.E. What is the running time of Cruel? Justify your answer.

11 You are a visitor at a political convention (or perhaps a faculty meeting) with n delegates. Each delegate
is a member of exactly one political party. It is impossible to tell which political party any delegate
belongs to. In particular, you will be summarily ejected from the convention if you ask. However, you
can determine whether any pair of delegates belong to the same party or not simply by introducing them
to each other. Members of the same party always greet each other with smiles and friendly handshakes;
members of different parties always greet each other with angry stares and insults.

11.A. Suppose more than half of the delegates belong to the same political party. Describe and analyze an
efficient algorithm that identifies every member of this majority party.

4



11.B. Now suppose precisely p political parties are present and one party has a plurality: more delegates
belong to that party than to any other party. Please present a procedure to pick out the people from
the plurality party as parsimoniously as possible.1 Do not assume that p = O(1).

1Describe and analyze an efficient algorithm that identifies every member of the plurality party.

5


