
HW 7 Due on Wednesday, November 1, 2017 at 10am

CS/ECE 374: Algorithms & Models of Computation, Fall 2017 Version: 1.0

Submission instructions as in previous homeworks.

1 (100 pts.) Where to park?
Urbana high school has (only) n students, and every student has a car (sadly, only one car). The

parking lot S has m ≥ n spots where one can park their car. The ith car ci, has exactly two distinct spots
si, s

′
i ∈ S where it is allowed to park, for i = 1, . . . , n. Given these spots, design an efficient algorithm

that decides if there is a way to park all the cars (no two cars park in the same spot).

1.A. (10 pts.) Consider a graph G with 2n nodes, where for every car ci there are two nodes 〈i/si〉 and
〈i/s′i〉. For γ ∈ {si, s′i} and δ ∈ {sj , s′j}, add a directed edge from 〈i/γ〉 to 〈j/δ〉, if parking the ith
car at γ implies that the jth car must be parked in the slot δ because the other parking spot of the
jth car is γ. Let m denote the number of edges of G. What is the maximum value of m (in the worst
case)? What is the running time of your algorithm to compute this graph?

1.B. (10 pts.) If there is a path in G from 〈i/γ〉 to 〈j/δ〉, then ci = γ forces cj = δ. Prove that if ci = si
forces cj = sj then cj = s′j forces ci = s′i.

1.C. (20 pts.) Prove that if 〈i/si〉 and 〈i/s′i〉 are in the same strong connected component of G, then
there is no legal way to park the cars.

1.D. (20 pts.) Assume that there is a legal solution, and consider a SCC Y of G involving cars,
say, c1, . . . , ct in G; that is, Y is a set of vertices of the form 〈1/x1〉, . . . , 〈t/xt〉. Prove that
〈1/x′1〉, . . . , 〈t/x′t〉 form their own strong connected component Y in G (Y is the reflection of Y ).

1.E. (10 pts.) Prove that if X is a SCC of G that is a sink in the meta graph GSCC, then X is a source
in the meta graph GSCC.

1.F. (30 pts.) Consider the algorithm that takes the sink X of the meta-graph GSCC, use the associated
slots as specified by the nodes in X, remove the vertices of X from G and the vertices of X from
G, and repeating this process on the remaining graph. Prove that this algorithm generates a legal
parking of the cars if it exits (or otherwise outputs that no such parking exists [describe how to
modify the algorithm to check for this]). Describe how to implement this algorithm efficiently.
What is the running time of your algorithm in the worst case as a function of n and m.

2 (100 pts.) Revisit.

2.A. (20 pts.) Consider a DAG G with n vertices and m edges. Assume that s is a source in G (a source
is a vertex that has only outgoing edges). Describe how to compute in linear time a set of new edges
such that s is the only source in the resulting graph (which still has to be a DAG). How many edges
does your algorithm add (the fewer, the better)?

2.B. (20 pts.) Assume G is a DAG with a source vertex s. Some of the vertices of G are marked as being
important. Show an algorithm that in linear time computes all the vertices that can be reached
from s via a path that goes through at least τ important vertices, where τ is a prespecified parameter.

2.C. (30 pts.) An edge e of G has the length `(e) assigned to it (it can be potentially a negative number,
not that it matters). Show an algorithm (faster is better) that computes for all the vertices v in G
the length of the longest path from s to v.

1

https://courses.engr.illinois.edu/cs374/fa2017/hw/hw_00.pdf


2.D. (30 pts.) Using the above, describe how to compute, in linear time, a path that visits the maximum
number of vertices of the DAG G (the path is allowed to start at any vertex and end at any vertex of
G).

2


