CS/ECE 374: Algorithms & Models of Computation, Fall 2017

Version: 1.0

Submission instructions as in previous <u>homeworks</u>.

1 (100 PTS.) Where to park?

Urbana high school has (only) n students, and every student has a car (sadly, only one car). The parking lot S has $m \ge n$ spots where one can park their car. The *i*th car c_i , has exactly two distinct spots $s_i, s'_i \in S$ where it is allowed to park, for i = 1, ..., n. Given these spots, design an efficient algorithm that decides if there is a way to park all the cars (no two cars park in the same spot).

- **1.A.** (10 PTS.) Consider a graph G with 2n nodes, where for every car c_i there are two nodes $\langle i/s_i \rangle$ and $\langle i/s'_i \rangle$. For $\gamma \in \{s_i, s'_i\}$ and $\delta \in \{s_j, s'_j\}$, add a directed edge from $\langle i/\gamma \rangle$ to $\langle j/\delta \rangle$, if parking the *i*th car at γ implies that the *j*th car must be parked in the slot δ because the other parking spot of the *j*th car is γ . Let *m* denote the number of edges of G. What is the maximum value of *m* (in the worst case)? What is the running time of your algorithm to compute this graph?
- **1.B.** (10 PTS.) If there is a path in G from $\langle i/\gamma \rangle$ to $\langle j/\delta \rangle$, then $c_i = \gamma$ **forces** $c_j = \delta$. Prove that if $c_i = s_i$ forces $c_j = s_j$ then $c_j = s'_j$ forces $c_i = s'_i$.
- **1.C.** (20 PTS.) Prove that if $\langle i/s_i \rangle$ and $\langle i/s'_i \rangle$ are in the same strong connected component of G, then there is no legal way to park the cars.
- **1.D.** (20 PTS.) Assume that there is a legal solution, and consider a SCC Y of G involving cars, say, c_1, \ldots, c_t in G; that is, Y is a set of vertices of the form $\langle 1/x_1 \rangle, \ldots, \langle t/x_t \rangle$. Prove that $\langle 1/x'_1 \rangle, \ldots, \langle t/x'_t \rangle$ form their own strong connected component \overline{Y} in G (\overline{Y} is the *reflection* of Y).
- **1.E.** (10 PTS.) Prove that if X is a SCC of G that is a sink in the meta graph G^{SCC} , then \overline{X} is a source in the meta graph G^{SCC} .
- **1.F.** (30 PTS.) Consider the algorithm that takes the sink X of the meta-graph G^{SCC} , use the associated slots as specified by the nodes in X, remove the vertices of X from G and the vertices of \overline{X} from G, and repeating this process on the remaining graph. Prove that this algorithm generates a legal parking of the cars if it exits (or otherwise outputs that no such parking exists [describe how to modify the algorithm to check for this]). Describe how to implement this algorithm efficiently. What is the running time of your algorithm in the worst case as a function of n and m.
- **2** (100 PTS.) Revisit.
 - **2.A.** (20 PTS.) Consider a DAG G with *n* vertices and *m* edges. Assume that *s* is a source in G (a *source* is a vertex that has only outgoing edges). Describe how to compute in linear time a set of new edges such that *s* is the only source in the resulting graph (which still has to be a DAG). How many edges does your algorithm add (the fewer, the better)?
 - **2.B.** (20 PTS.) Assume G is a DAG with a source vertex s. Some of the vertices of G are marked as being *important*. Show an algorithm that in linear time computes all the vertices that can be reached from s via a path that goes through at least τ important vertices, where τ is a prespecified parameter.
 - **2.C.** (30 PTS.) An edge e of G has the length $\ell(e)$ assigned to it (it can be potentially a negative number, not that it matters). Show an algorithm (faster is better) that computes for all the vertices v in G the length of the *longest* path from s to v.

2.D. (30 PTS.) Using the above, describe how to compute, in linear time, a path that visits the maximum number of vertices of the DAG G (the path is allowed to start at any vertex and end at any vertex of G).