Submission instructions as in previous homeworks.

1 (100 PTS.) Where to park?
Urbana high school has (only) n students, and every student has a car (sadly, only one car). The parking lot S has $m \geq n$ spots where one can park their car. The i th car c_{i}, has exactly two distinct spots $s_{i}, s_{i}^{\prime} \in S$ where it is allowed to park, for $i=1, \ldots, n$. Given these spots, design an efficient algorithm that decides if there is a way to park all the cars (no two cars park in the same spot).
1.A. (10 PTS.) Consider a graph G with $2 n$ nodes, where for every car c_{i} there are two nodes $\left\langle i / s_{i}\right\rangle$ and $\left\langle i / s_{i}^{\prime}\right\rangle$. For $\gamma \in\left\{s_{i}, s_{i}^{\prime}\right\}$ and $\delta \in\left\{s_{j}, s_{j}^{\prime}\right\}$, add a directed edge from $\langle i / \gamma\rangle$ to $\langle j / \delta\rangle$, if parking the i th car at γ implies that the j th car must be parked in the slot δ because the other parking spot of the j th car is γ. Let m denote the number of edges of G . What is the maximum value of m (in the worst case)? What is the running time of your algorithm to compute this graph?
1.B. (10 PTS.) If there is a path in G from $\langle i / \gamma\rangle$ to $\langle j / \delta\rangle$, then $c_{i}=\gamma$ forces $c_{j}=\delta$. Prove that if $c_{i}=s_{i}$ forces $c_{j}=s_{j}$ then $c_{j}=s_{j}^{\prime}$ forces $c_{i}=s_{i}^{\prime}$.
1.C. (20 PTS.) Prove that if $\left\langle i / s_{i}\right\rangle$ and $\left\langle i / s_{i}^{\prime}\right\rangle$ are in the same strong connected component of G , then there is no legal way to park the cars.
1.D. (20 PTs.) Assume that there is a legal solution, and consider a SCC Y of G involving cars, say, c_{1}, \ldots, c_{t} in G ; that is, Y is a set of vertices of the form $\left\langle 1 / x_{1}\right\rangle, \ldots,\left\langle t / x_{t}\right\rangle$. Prove that $\left\langle 1 / x_{1}^{\prime}\right\rangle, \ldots,\left\langle t / x_{t}^{\prime}\right\rangle$ form their own strong connected component \bar{Y} in $\mathrm{G}(\bar{Y}$ is the reflection of $Y)$.
1.E. (10 PTS.) Prove that if X is a SCC of G that is a sink in the meta graph $\mathrm{G}^{\mathrm{SCC}}$, then \bar{X} is a source in the meta graph $\mathrm{G}^{\mathrm{SCC}}$.
1.F. (30 PTS.) Consider the algorithm that takes the sink X of the meta-graph $\mathrm{G}^{\mathrm{SCC}}$, use the associated slots as specified by the nodes in X, remove the vertices of X from G and the vertices of \bar{X} from G, and repeating this process on the remaining graph. Prove that this algorithm generates a legal parking of the cars if it exits (or otherwise outputs that no such parking exists [describe how to modify the algorithm to check for this]). Describe how to implement this algorithm efficiently.
What is the running time of your algorithm in the worst case as a function of n and m.
2 (100 PTS.) Revisit.
2.A. (20 PTs.) Consider a DAG G with n vertices and m edges. Assume that s is a source in G (a source is a vertex that has only outgoing edges). Describe how to compute in linear time a set of new edges such that s is the only source in the resulting graph (which still has to be a DAG). How many edges does your algorithm add (the fewer, the better)?
2.B. (20 PTS.) Assume G is a DAG with a source vertex s. Some of the vertices of G are marked as being important. Show an algorithm that in linear time computes all the vertices that can be reached from s via a path that goes through at least τ important vertices, where τ is a prespecified parameter.
2.C. (30 PTs.) An edge e of G has the length $\ell(\mathrm{e})$ assigned to it (it can be potentially a negative number, not that it matters). Show an algorithm (faster is better) that computes for all the vertices v in G the length of the longest path from s to v.
2.D. (30 PTs.) Using the above, describe how to compute, in linear time, a path that visits the maximum number of vertices of the DAG G (the path is allowed to start at any vertex and end at any vertex of G).

