
HW 10: Extra problems Instructor: Sariel Har-Peled

CS/ECE 374: Algorithms & Models of Computation, Fall 2017 Version: 1.0

1 A subset S of vertices in an undirected graph G is called almost independent if at most 374 edges in
G have both endpoints in S. Prove that finding the size of the largest almost-independent set of vertices
in a given undirected graph is NP-hard.

2 A subset S of vertices in an undirected graph G is called triangle-free if, for every triple of vertices
u, v, w ∈ S, at least one of the three edges uv, uw, vw is absent from G. Prove that finding the size of the
largest triangle-free subset of vertices in a given undirected graph is NP-hard.

3 Charon needs to ferry n recently deceased people across the river Acheron into Hades. Certain pairs of
these people are sworn enemies, who cannot be together on either side of the river unless Charon is also
present. (If two enemies are left alone, one will steal the obol from the others mouth, leaving them to
wander the banks of the Acheron as a ghost for all eternity. Lets just say this is a Very Bad Thing.) The
ferry can hold at most k passengers at a time, including Charon, and only Charon can pilot the ferry.
Prove that it is NP-hard to decide whether Charon can ferry all n people across the Acheron unharmed.1
The input for Charons problem consists of the integers k and n and an n-vertex graph G describing the
pairs of enemies. The output is either True or False.
This problem is a generalization of the following extremely well-known puzzle, whose first known ap-
pearance is in the treatise Propositiones ad Acuendos Juvenes [Problems to Sharpen the Young] by the
8th-century English scholar Alcuin of York.2

XVIII. Propositio De Homine et Capra et Lvpo.
Homo quidam debebat ultra fluuium transferre lupum, capram, et fasciculum cauli. Et non potuit

aliam nauem inuenire, nisi quae duos tantum ex ipsis ferre ualebat. Praeceptum itaque ei fuerat, ut
omnia haec ultra illaesa omnino transferret. Dicat, qui potest, quomodo eis illaesis transire potuit?

Solutio. Simili namque tenore ducerem prius capram et dimitterem foris lupum et caulum. Tum
deinde uenirem, lupumque transferrem: lupoque foris misso capram naui receptam ultra reducerem;
capramque foris missam caulum transueherem ultra; atque iterum remigassem, capramque assumptam
ultra duxissem. Sicque faciendo facta erit remigatio salubris, absque uoragine lacerationis.

In case your classical Latin is rusty, here is an English translation:

XVIII. The Problem of the Man, the Goat, and the Wolf.
A man needed to transfer a wolf, a goat, and a bundle of cabbage across a river. However, he found

that his boat could only bear the weight of two [objects at a time, including the man]. And he had to
get everything across unharmed. Tell me if you can: How they were able to cross unharmed?

Solution. In a similar fashion [as an earlier problem], I would first take the goat across and leave
the wolf and cabbage on the opposite bank. Then I would take the wolf across; leaving the wolf on shore,
I would retrieve the goat and bring it back again. Then I would leave the goat and take the cabbage
across. And then I would row across again and get the goat. In this way the crossing would go well,
without any threat of slaughter.

Please do not write your solution to problem 3 in classical Latin.
1Aside from being, you know, dead.
2At least, we think thats who wrote it; the evidence for his authorship is rather circumstantial, although we do know from his

correspondence with Charlemagne that he sent the emperor some simple arithmetical problems for fun. Most scholars believe that
even if Alcuin is the actual author of the Propositiones, he didnt come up with the problems himself, but just collected his problems
from other sources. Some things never change.

1



4 Consider an instance of the Satisfiability Problem, specified by clauses C1, . . . , Ck over a set of Boolean
variables x1, . . . , xn. We say that the instance is monotone if each term in each clause consists of a
nonnegated variable; that is each term is equal to xi, for some i, rather than x̄i. Monotone instance of
Satisfiability are very easy to solve: They are always satisfiable, by setting each variable equal to 1.
For example, suppose we have the three clauses

(x1 ∨ x2), (x1 ∨ x3), (x2 ∨ x3)

This is monotone, and indeed the assignment that sets all three variables to 1 satisfies all the clauses. But
we can observe that this is not the only satisfying assignment; we could also have set x1 and x2 to 1 and
x3 to 0. Indeed, for any monotone instance, it is natural to ask how few variables we need to set to 1 in
order to satisfy it.
Given a monotone instance of Satisfiability, together with a number k, the problem of Monotone Satisfi-
ability with Few True Variables asks: Is there a satisfying assignment for the instance in which at most k
variables are set to 1? Prove that this problem is NP-Complete. Hint: Reduce from Vertex Cover.

5 Given an undirected graph G = (V,E), a partition of V into V1, V2, . . . , Vk is said to be a clique cover of
size k if each Vi is a clique in G. Prove that the problem of deciding whether G has a clique cover of size
at most k is NP-Complete. Hint: Consider the complement of G.

6 Given an undirected graph G = (V,E) a matching in G is a set of edges M ⊆ E such that no two edges
in M share a node. A matching M is perfect if 2|M | = |V |, in other words if every node is incident to
some edge of M . PerfectMatching is the following decision problem: does a given graph G have a perfect
matching? Describe a polynomial-time reduction from PerfectMatching to SAT. Does this problem that
PerfectMatching is a difficult problem?

7 A balloon is a directed graph on an even number of nodes, say 2n, in which n of the nodes form a directed
cycle and the remaining n vertices are connected in a “tail” that consists of a directed path joined to one
of the nodes in the cycle. See figure below for a balloon with 8 nodes.

Given a directed graph G and an integer k, the BALLOON problem asks whether or not there exists a
subgraph which is a baloon that contains 2k nodes. Prove that BALLOON is NP-Complete.

8 Consider the following problem. You are managing a communication network, modeled by a directed
graph G = (V,E). There are c users who are interested in making use of this network. User i (for each
i = 1, 2, . . . , c) issues a request to reserve a specific path Pi in G on which to transmit data.
You are interested in accepting as many of these path requests as possible, subject to the following
restriction: if you accept both Pi and Pj , then Pi and Pj can not share any modes.
Thus the Path Selection Problem asks: Given a directed graph G = (V,E), a set of requests P1, . . . , Pc-each
of which must be a path in G- and a number k, is it possible to select at least k of the paths so that no
two of the selected paths share any nodes?
Prove that the Path Selection is NP-Complete.

2



9 A double-Hamiltonian tour in an undirected graph G is a closed walk that visits every vertex in G exactly
twice. Prove that it is NP-hard to decide whether a given graph G has a double-Hamiltonian tour.

b
d

c

f
g

a

e

This graph contains the double-Hamiltonian tour a�b�d�g�e�b�d�c�f�a�c�f�g�e�a.

Solution: We prove the problem is NP-hard with a reduction from the standard Hamiltonian cycle problem.
Let G be an arbitrary undirected graph. We construct a new graph H by attaching a small gadget to
every vertex of G. Specifically, for each vertex v, we add two vertices v] and v[, along with three edges
vv[, vv], and v[v].

A vertex in G, and the corresponding vertex gadget in H.

I claim that G has a Hamiltonian cycle if and only if H has a double-Hamiltonian tour.

=⇒ Suppose G has a Hamiltonian cycle v1 → v2 → · · · → vn → v1. We can construct a double-
Hamiltonian tour of H by replacing each vertex vi with the following walk:

· · · → vi → v[i → v]i → v[i → v]i → vi → · · ·

⇐= Conversely, suppose H has a double-Hamiltonian tour D. Consider any vertex v in the original graph
G; the tour D must visit v exactly twice. Those two visits split D into two closed walks, each of
which visits v exactly once. Any walk from v[ or v] to any other vertex in H must pass through v.
Thus, one of the two closed walks visits only the vertices v, v[, and v]. Thus, if we simply remove
the vertices in H \G from D, we obtain a closed walk in G that visits every vertex in G once.

Given any graph G, we can clearly construct the corresponding graph H in polynomial time.

With more effort, we can construct a graph H that contains a double-Hamiltonian tour that traverses
each edge of H at most once if and only if G contains a Hamiltonian cycle. For each vertex v in G
we attach a more complex gadget containing five vertices and eleven edges, as shown on the next page.

A vertex in G, and the corresponding modified vertex gadget in H.

3



Solution: Bad and incorrect solution!!!
We attempt to prove the problem is NP-hard with a reduction from the Hamiltonian cycle problem. Let
G be an arbitrary undirected graph. We construct a new graph H by attaching a self-loop every vertex
of G. Given any graph G, we can clearly construct the corresponding graph H in polynomial time.

An incorrect vertex gadget.

Suppose G has a Hamiltonian cycle v1 → v2 → · · · → vn → v1. We can construct a double-Hamiltonian
tour of H by alternating between edges of the Hamiltonian cycle and self-loops:

v1�v1�v2�v2�v3� · · ·�vn�vn�v1.

On the other hand, if H has a double-Hamiltonian tour, we cannot conclude that G has a Hamiltonian
cycle, because we cannot guarantee that a double-Hamiltonian tour in H uses any self-loops. The graph
G shown below is a counterexample; it has a double-Hamiltonian tour (even before adding self-loops) but
no Hamiltonian cycle.

This graph has a double-Hamiltonian tour.

Rubric:[for all polynomial-time reductions] 10 points =

+ 3 points for the reduction itself
– For an NP-hardness proof, the reduction must be from a known NP-hard problem. You can use

any of the NP-hard problems listed in the lecture notes (except the one you are trying to prove
NP-hard, of course).

+ 3 points for the if proof of correctness
+ 3 points for the only if proof of correctness
+ 1 point for writing polynomial time

• An incorrect polynomial-time reduction that still satisfies half of the correctness proof is worth at
most 4/10.

• A reduction in the wrong direction is worth 0/10.

4


