A *subsequence* of a sequence (for example, an array, linked list, or string), obtained by removing zero or more elements and keeping the rest in the same sequence order. A subsequence is called a *substring* if its elements are contiguous in the original sequence. For example:

- SUBSEQUENCE, UBSEQU, and the empty string ε are all substrings (and therefore subsequences) of the string SUBSEQUENCE;
- SBSQNC, SQUEE, and EEE are all subsequences of SUBSEQUENCE but not substrings;
- ullet QUEUE, EQUUS, and DIMAGGIO are not subsequences (and therefore not substrings) of SUBSEQUENCE.

Version: 1.0

Describe recursive backtracking algorithms for the following problems. Don't worry about running times.

Given an array A[1..n] of integers, compute the length of a **longest increasing subsequence**. A sequence $B[1..\ell]$ is increasing if B[i] > B[i-1] for every index $i \ge 2$. For example, given the array

$$\langle 3, \underline{1}, \underline{4}, 1, \underline{5}, 9, 2, \underline{6}, 5, 3, 5, \underline{8}, \underline{9}, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7 \rangle$$

your algorithm should return the integer 6, because (1, 4, 5, 6, 8, 9) is a longest increasing subsequence (one of many).

Given an array A[1..n] of integers, compute the length of a **longest decreasing subsequence**. A sequence $B[1..\ell]$ is decreasing if B[i] < B[i-1] for every index $i \ge 2$. For example, given the array

 $\langle 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7 \rangle$

your algorithm should return the integer 5, because (9,6,5,4,2) is a longest decreasing subsequence (one of many).

Given an array A[1..n] of integers, compute the length of a **longest alternating subsequence**. A sequence $B[1..\ell]$ is alternating if B[i] < B[i-1] for every even index $i \ge 2$, and B[i] > B[i-1] for every odd index $i \ge 3$.

For example, given the array

$$\langle 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7 \rangle$$

your algorithm should return the integer 17, because (3, 1, 4, 1, 5, 2, 6, 5, 8, 7, 9, 3, 8, 4, 6, 2, 7) is a longest alternating subsequence (one of many).

To think about later:

Given an array A[1..n] of integers, compute the length of a longest convex subsequence of A. A sequence $B[1..\ell]$ is convex if B[i] - B[i-1] > B[i-1] - B[i-2] for every index $i \ge 3$.

For example, given the array

$$\langle \underline{\mathbf{3}}, \underline{\mathbf{1}}, 4, \underline{\mathbf{1}}, 5, 9, \underline{\mathbf{2}}, 6, 5, 3, \underline{\mathbf{5}}, 8, \underline{\mathbf{9}}, 7, 9, 3, 2, 3, 8, 4, 6, 2, 7 \rangle$$

your algorithm should return the integer 6, because (3, 1, 1, 2, 5, 9) is a longest convex subsequence (one of many).

Given an array A[1..n], compute the length of a longest **palindrome** subsequence of A. Recall that a sequence $B[1..\ell]$ is a palindrome if $B[i] = B[\ell - i + 1]$ for every index i. For example, given the array

$$\langle 3, 1, \underline{4}, 1, 5, \underline{9}, 2, 6, \underline{5}, \underline{3}, \underline{5}, 8, 9, 7, \underline{9}, 3, 2, 3, 8, \underline{4}, 6, 2, 7 \rangle$$

your algorithm should return the integer 7, because $\langle 4, 9, 5, 3, 5, 9, 4 \rangle$ is a longest palindrome subsequence (one of many).