- CS 373: Theory of Computation
- Sariel Har-Peled and Madhusudan Parthasarathy

Lecture 21: Undecidability, halting and diagonal-
ization
14 April 2009

‘There must be some mistake,” he said, ‘are you not a greater computer than the Milliard
Gargantubrain at Maximegalon which can count all the atoms in a star in a millisecond?’

‘The Milliard Gargantubrain?’ said Deep Thought with unconcealed contempt. ‘A mere abacus
- mention it not.’
— The Hitch Hiker’s Guide to the Galaxy, by Douglas Adams.

In this lecture we will discuss the halting problem and diagonalization. This covers
most of Sipser section 4.2.

1 Liar’s Paradox

There’s a widespread fascination with logical paradoxes. For example, in the Deltora Quest
novel “The Lake of Tears” (author Emily Rodda), the hero Lief has just incorrectly answered
the trick question posed by the giant guardian of a bridge.

“We will play a game to decide which way you will die,” said the man. “You may
say one thing, and one thing only. If what you say is true, I will strangle you
with my bare hands. If what you say is false, I will cut off your head.”

After some soul-searching, Lief replies “My head will be cut off.” At this point, there’s no
way for the giant to make good on his threat, so the spell he’s under melts away, he changes
back to his original bird form, and Lief gets to cross the bridge.

The key problem for the giant is that, if he strangles Lief, then Lief’s statement will
have been false. But he said he would strangle him only if his statement was true. So that
does not work. And cutting off his head does not work any better. So the giant’s algorithm
sounded good, but it turned out not to work properly for certain inputs.

A key property of this paradox is that the input (Lief’s reply) duplicates material used
in the algorithm. We’ve fed part of the algorithm back into itself.

2 The halting problem

Consider the following language

Ay = {(M,w> ‘M is a TM and M accepts w}.

We saw in the previous lecture, that one can
build a universal Turing machine Uty that can
simulate any Turing machine on any input. As
such, using Uty, we have the following TM
recognizing Aty:

Note, that if M goes into an infinite loop
on the input w, then the TM Recognize-Atm
would run forever. This means that this TM
is only a recognizer, not a decider. A decider
for this problem would call a halt to simula-
tions that will loop forever. So the question of
whether Aty is TM decidable is equivalent to
asking whether we can tell if a TM M will halt
on input w. Because of this, both versions of
this question are typically called the halting
problem.

We remind the reader that the language
hierarchy looks as depicted on the right.

2.1 Implications

So, let us suppose that the Halting problem (i.e., deciding if a word in is in Aty) were
decidable. Namely, there is an algorithm that can solves it (for any input). this seems
somewhat hard to believe since even humans can not solve this problem (and we still live

Recognize-Atm((M, w))
Simulate M using Uty till it halts
if M halts and accepts then
accept
else
reject

Regular

Context free grammar

Turing decidable

Turing recognizable

Not Turing recognizable.

under the delusion that we are smarter than computers).

If we could decide the Halting problem, then we could build compilers that would auto-
matically prevent programs from going into infinite loops and other very useful debugging
tools. We could also solve a variety of hard mathematical problems. For example, consider

the following program.

Percolate (n)
for p < g <ndo

return

Main:
n <+ 4
while true do
Percolate (n)
n<n-+2

if p is prime and ¢ is prime, and p + ¢ = n then

If program reach this point then Stop!!!

Does this program stops? We do not know. If it does stop, then the Strong Goldbach
conjecture is false.

Conjecture 2.1 (Strong Goldbach conjecture.) FEvery even integer greater than 2 can
be written as a sum of two primes.

This conjecture is still open and its considered to be one of the major open problems
in mathematics. It was stated in a letter on 7 of June 1742, and it is still open. Its seems
unlikely that a computer program would be able to solve this, and a larger number of other
mathematical conjectures. If Aty is decidable, then we can write a program that would try
to generate all possible proofs of a conjecture and verify each proof. Now, if we can decide if
a programs stop, then we can discover whether or not a mathematical conjecture is true or
not, and this seems extremely unlikely (that a computer would be able to solve all problems
in mathematics).

I hope that this informal argument convinces you that its seems extremely unlikely that
Atpm is TM decidable. Fortunately, we can prove this fact formally.

3 Not all languages are recognizable

Let us show a non-constructive proof that not all languages are Turing recognizable. This
is true because there are fewer Turing machines than languages.

Fix an alphabet ¥ and define the lexicographic order on ¥* to be: first order strings by
length, within each length put them in dictionary order.

Lexicographic order gives us a mapping from the integers to all strings, e.g. s is the first
string in our ordered list, and s; is the ith string.

The encoding of each Turing machine is a finite-length string. So we can put all Turing
machines into an ordered list by sorting their encodings in lexicographic order. Let us call

the Turing machines in our list My, M,, and so forth.
We can make an (infinite) table of how each Turing

machine behaves on each input string. This table in de- | B

picted on the right. Here, the ith row represents the ith | M; | acc acc rej rej
TM M;, where the jth entry in the row is acc if M; accepts | M2 | rej acc rej acc
the jth word s;. Mj | acc rej acc acc

The idea is now to define a language from the table. | My | rej —acc rej rej
Consider the language Lgiag Which is the language formed
by taking the diagonal of this table.

Formally, the word s; € Lgiag if and only if M; accepts the string s;. Now, consider the
complement language L = Lgiag-

This language can not be recognized by an of the Turing machines on the list My, M,
Indeed, if M} recognized the language L, then consider s;. There are two possibilities.

o If M} accepts s; then the kth entry in the kth row of this infinite table is acc. Which
implies in turn that s, ¢ L (since L is the complement language), but then Mj (which
recognizes L) must not accept s,. A contradiction.

e If M, does not accept s; then the kth entry in the kth row of this infinite table is rej.
Which implies in turn that s, € L (since L is the complement language), but then M
(which recognizes L) must accept sg. A contradiction.

Thus, our assumption that all languages have a TM that recognizes them is false. Let us
summarize this very surprising result.

Theorem 3.1 Not all languages have a TM that recognize them.

Intuitively, the above claim is a statement above infinities: There are way more languages
(essentially, any real number defines a language) than TMs, as the number of TMs is count-
able (i.e., as numerous as integer numbers). Since the cardinality of real numbers (i.e., N)
is strictly larger than the cardinality of integer numbers (i.e., W), it follows that there must
be an orphan language without a machine recognizing it.

A limitation of the preceding proof is that it does not identify any particular tasks that
are not TM recognizable or decidable. Perhaps the problem tasks are only really obscure
problems of interest only to mathematicians. Sadly, that is not true.

4 The Halting theorem

We will now show that a particular concrete problem is not TM decidable. This will let us
construct particular concrete problems that are not even TM recognizable.

Theorem 4.1 (The halting theorem.) The language Aty is not TM decidable,

Proof: Assume Aty is TM decidable, and let Halt be this TM deciding Aty. That is,
Halt is a TM that always halts, and works as follows

Halt((M, w>> = {accept M accepts w

reject M does not accept w.

We will now build a new TM Flipper, such that on the input (M), it runs Halt on
the input (M, M). If Halt((M, M)) accepts than Flipper rejects, and if Halt((M, M>>
rejects than Flipper accepts. Formally
Flipper ((M))

res <— Halt((M, M))

if res is accept then
reject

else

accept

The key observation is that Flipper always stops. Indeed, it uses Halt as a subroutine
and Halt by our assumptions always halts. In particular, we have the following

Pl ((M>) reject M accepts (M)
ipper =
pp accept M does not accept (M) .

4

Flipper is a TM (duh!), and as such it has an encoding (Flipper). Now, consider running
Flipper on itself. We get the following

. . reject Flipper accepts (Flipper)
Fllpper< (Fllpper>> =))
accept Flipper does not accept (Flipper).

This is absurd. Ridiculous even! Indeed, if Flipper accepts (Flipper), then it rejects it (by
the above definition), which is impossible. Indeed, if Flipper must reject (note, that Flipper
always stops!) (Flipper), but then by the above definition it must accept (Flipper), which
is also impossible.

Thus, it must be that our assumption that Halt exists is false. We conclude that Aty
is not TM decidable. []

Corollary 4.2 The language Aty is TM recognizable but not TM decidable,

4.1 Diagonalization view of this proof

Let us redraw the diagonalization table from Sec-

tion ??. This time, we will include only input | | (M) (M) (Ms) (My)
strings that happen to be encodings of Turing ma- ["37, T rej acc rej rej
chines. The table on the right shows the behavior | pz, | rej acc rej acc

of Halt on inputs of the form (M;, Mj). Our con- | A7, | acc acc acc rej
structed TM Flipper takes two inputs that are | p7, | rej acc acc rej
identical (M, M) and its output is the opposite of

Halt ((M, M)) .
So it corresponds to the negation of the entries down the diagonal of this table. Again, we

essentially argued that there is no row in this infinite table that its entries are the negation
of the diagonal. As such, our assumption that Halt is a decider, was false.

5 More Implications

From this basic result, we can derive a huge variety of problems that can not be solved.
Spinning out these consequences will occupy us for most of the rest of the term.

Theorem 5.1 There is no C program that reads a C program P and input w, and decides if
P “accepts” w.

The proof of the above theorem is identical to the halting theorem - we just perform our
rewriting on the C program.

Also, notice that being able to recognize a language and its complement implies that the
language is decidable, as the following theorem testifies.

Theorem 5.2 A language is TM decidable iff it is TM recognizable and its complement is
also TM recognizable.

Proof: 1t is obvious that decidability implies that the language and its complement are
recognizable. To prove the other direction, assume that L and L are both recognizable. Let
M and N be Turing machines recognizing them, respectively. Then we can build a decider
for L by running M and N in parallel.

Specifically, suppose that w is the string input to M. Simulate both M and N using Ur,/,
but single-step the simulations. Advance each simulation by one step, alternating between
the two simulations. Halt when either of the simulations halts, returning the appropriate
answer.

If w is in L, then the simulation of M must eventually halt. If w is not in L, then the
simulation of N must eventually halt. So our combined simulation must eventually halt and,
therefore, it is a decider for L. []

A quick consequence of this theorem is that:

Theorem 5.3 The set complement of Ay is not TM recognizable.

If it were recognizable, then we could build a decider for A7y, by Theorem 77.

