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Part I

Administrivia
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Instructional Staff

1 Instructor: Sariel Har-Peled

2 109 students.

3 9 Teaching Assistants

4 16 Undergraduate Course Assistants

5 Office hours: See course webpage

6 Contacting us: Use private notes on Piazza to reach
course staff. Direct email only for sensitive or confidential
information.
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Online resources

1 Webpage: General information, announcements,
homeworks, course policies

http://courses.engr.illinois.edu/cs374/fa2017/

2 Gradescope: Homework submission and grading, regrade
requests

3 Moodle: Quizzes, solutions to homeworks, grades

4 Piazza: Announcements, online questions and discussion,
contacting course staff (via private notes)

See course webpage for links

Important: check Piazza at least once each day.
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Prereqs and Resources

1 Prerequisites: CS 173 (discrete math), CS 225 (data
structures)

2 Recommended books: (not required)
1 Introduction to Theory of Computation by Sipser
2 Introduction to Automata, Languages and Computation

by Hopcroft, Motwani, Ullman
3 Algorithms by Dasgupta, Papadimitriou & Vazirani.

Available online for free!
4 Algorithm Design by Kleinberg & Tardos

3 Lecture notes/slides/pointers: available on course
web-page

4 Additional References
1 Lecture notes of Jeff Erickson, Sariel Har-Peled, Mahesh

Viswanathan and others
2 Introduction to Algorithms: Cormen, Leiserson, Rivest, Stein.

3 Computers and Intractability: Garey and Johnson.
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Grading Policy: Overview

1 Quizzes: 0% for self-study

2 Homeworks: 28%

3 Midterm exams: 42% (2 × 21%)

4 Final exam: 30% (covers the full course content)

Midterm exam dates:

1 Midterm 1: Monday October 2, 7-9pm.

2 Midterm 2: Monday November 13: 7-9pm.

No conflict exam offered unless you have a valid excuse.
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Homeworks

1 Self-study quizzes each week on Moodle. No credit but
strongly recommended.

2 One homework every week: Due on Wednesdays at 10am
on Gradescope. Assigned at least a week in advance.

3 Homeworks can be worked on in groups of up to 3 and
each group submits one written solution (except
Homework 0).

4 Important: academic integrity policies. See course web
page.
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More on Homeworks

1 No extensions or late homeworks accepted.

2 To compensate, nine problems will be dropped.
Homeworks typically have three problems each.

3 Important: Read homework FAQ/instructions on website.

9



Discussion Sessions/Labs

1 50min problem solving session led by TAs

2 Two times a week

3 Go to your assigned discussion section

4 Bring pen and paper!
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Advice

1 Attend lectures, please ask plenty of questions.

2 Attend discussion sessions.

3 Don’t skip homework and don’t copy homework solutions.
Each of you should think about all the problems on the
home work - do not divide and conquer.

4 Use pen and paper since that is what you will do in exams
which count for 75% of the grade. Keep a note book.

5 Study regularly and keep up with the course.

6 This is a course on problem solving. Solve as many as you
can! Books/notes have plenty.

7 This is also a course on providing rigorous proofs of
correctness. Refresh your 173 background on proofs.

8 Ask for help promptly. Make use of office hours/Piazza.
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Homework 0

1 HW 0 is posted on the class website. Quiz 0 available on
Moodle.

2 HW 0 due Wednesday, September 6, 2017 at 10am on
Gradescope.

3 Groups of size up to 3.

12



Miscellaneous

Please contact instructors if you need special accommodations.

Lectures are being taped. See course webpage.
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Part II

Course Goals and Overview
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High-Level Questions

1 Modeling: States/Graphs/Recursion/Algorithms.
2 Algorithms

1 What is an algorithm?
2 What is an efficient algorithm?
3 Some fundamental algorithms for basic problems
4 Broadly applicable techniques in algorithm design

3 What is a mathematical definition of a computer?
1 Is there a formal definition?
2 Is there a “universal” computer?

4 What can computers compute?
1 Are there tasks that our computers cannot do?
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Course Structure

Course divided into three parts:

1 Basic automata theory: finite state machines, regular
languages, hint of context free languages/grammars,
Turing Machines

2 Algorithms and algorithm design techniques

3 Undecidability and NP-Completeness, reductions to prove
intractability of problems
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Goals

1 Algorithmic thinking
2 Learn/remember some basic tricks, algorithms, problems,

ideas

3 Understand/appreciate limits of computation
(intractability)

4 Appreciate the importance of algorithms in computer
science and beyond (engineering, mathematics, natural
sciences, social sciences, ...)
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Historical motivation for computing

1 Fast (and automated) numerical calculations

2 Automating mathematical theorem proving
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Models of Computation vs Computers

1 Model of Computation: an “idealized mathematical
construct” that describes the primitive instructions and
other details

2 Computer: an actual “physical device” that implements a
very specific model of computation

Models and devices:

1 Algorithms: usually at a high level in a model

2 Device construction: usually at a low level

3 Intermediaries: compilers

4 How precise? Depends on the problem!

5 Physics helps implement a model of computer

6 Physics also inspires models of computation
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Adding Numbers

Problem Given two n-digit numbers x and y , compute
their sum.

Basic addition

3141
+7798
10939
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Adding Numbers

c = 0
for i = 1 to n do

z = xi + yi
z = z + c
If (z > 10)

c = 1
z = z − 10 (equivalently the last digit of z)

Else c = 0
print z

End For

If (c == 1) print c

1 Primitive instruction is addition of two digits

2 Algorithm requires O(n) primitive instructions
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Multiplying Numbers

Problem Given two n-digit numbers x and y , compute
their product.

Grade School Multiplication
Compute “partial product” by multiplying each digit of y with
x and adding the partial products.

3141
×2718
25128
3141

21987
6282
8537238
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Time analysis of grade school multiplication

1 Each partial product: Θ(n) time

2 Number of partial products: ≤ n
3 Adding partial products: n additions each Θ(n) (Why?)

4 Total time: Θ(n2)

5 Is there a faster way?
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Fast Multiplication

Best known algorithm: O(n log n · 2O(log∗ n)) time [Furer
2008]

Previous best time: O(n log n log log n) [Schonhage-Strassen
1971]

Conjecture: there exists an O(n log n) time algorithm

We don’t fully understand multiplication!
Computation and algorithm design is non-trivial!

24



Fast Multiplication

Best known algorithm: O(n log n · 2O(log∗ n)) time [Furer
2008]

Previous best time: O(n log n log log n) [Schonhage-Strassen
1971]

Conjecture: there exists an O(n log n) time algorithm

We don’t fully understand multiplication!
Computation and algorithm design is non-trivial!

24



Post Correspondence Problem

Given: Dominoes, each with a top-word and a bottom-word.

b

bbb

ba

bbb

abb

a

abb

baa

a

ab

Can one arrange them, using any number of copies of each
type, so that the top and bottom strings are equal?

abb

a

ba

bbb

abb

a

a

ab

abb

baa

b

bbb
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Halting Problem

Debugging problem: Given a program M and string x , does
M halt when started on input x?

Simpler problem: Given a program M , does M halt when it
is started? Equivalently, will it print “Hello World”?

One can prove that there is no algorithm for the above two
problems!
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