
CS 374: Algorithms & Models of

Computation

Sariel Har-Peled

University of Illinois, Urbana-Champaign

Fall 2017

1



Algorithms & Models of Computation
CS/ECE 374, Fall 2017

Administrivia, Introduction
Lecture 1
Tuesday, August 29, 2017

2



Part I

Administrivia

3



Instructional Staff

1 Instructor: Sariel Har-Peled

2 109 students.

3 9 Teaching Assistants

4 16 Undergraduate Course Assistants

5 Office hours: See course webpage

6 Contacting us: Use private notes on Piazza to reach
course staff. Direct email only for sensitive or confidential
information.

4



Online resources

1 Webpage: General information, announcements,
homeworks, course policies

http://courses.engr.illinois.edu/cs374/fa2017/

2 Gradescope: Homework submission and grading, regrade
requests

3 Moodle: Quizzes, solutions to homeworks, grades

4 Piazza: Announcements, online questions and discussion,
contacting course staff (via private notes)

See course webpage for links

Important: check Piazza at least once each day.

5

http://courses.engr.illinois.edu/cs374/fa2017/


Prereqs and Resources

1 Prerequisites: CS 173 (discrete math), CS 225 (data
structures)

2 Recommended books: (not required)
1 Introduction to Theory of Computation by Sipser
2 Introduction to Automata, Languages and Computation

by Hopcroft, Motwani, Ullman
3 Algorithms by Dasgupta, Papadimitriou & Vazirani.

Available online for free!
4 Algorithm Design by Kleinberg & Tardos

3 Lecture notes/slides/pointers: available on course
web-page

4 Additional References
1 Lecture notes of Jeff Erickson, Sariel Har-Peled, Mahesh

Viswanathan and others
2 Introduction to Algorithms: Cormen, Leiserson, Rivest, Stein.

3 Computers and Intractability: Garey and Johnson.
6



Grading Policy: Overview

1 Quizzes: 0% for self-study

2 Homeworks: 28%

3 Midterm exams: 42% (2 × 21%)

4 Final exam: 30% (covers the full course content)

Midterm exam dates:

1 Midterm 1: Monday October 2, 7-9pm.

2 Midterm 2: Monday November 13: 7-9pm.

No conflict exam offered unless you have a valid excuse.

7



Homeworks

1 Self-study quizzes each week on Moodle. No credit but
strongly recommended.

2 One homework every week: Due on Wednesdays at 10am
on Gradescope. Assigned at least a week in advance.

3 Homeworks can be worked on in groups of up to 3 and
each group submits one written solution (except
Homework 0).

4 Important: academic integrity policies. See course web
page.

8



More on Homeworks

1 No extensions or late homeworks accepted.

2 To compensate, nine problems will be dropped.
Homeworks typically have three problems each.

3 Important: Read homework FAQ/instructions on website.

9



Discussion Sessions/Labs

1 50min problem solving session led by TAs

2 Two times a week

3 Go to your assigned discussion section

4 Bring pen and paper!

10



Advice

1 Attend lectures, please ask plenty of questions.

2 Attend discussion sessions.

3 Don’t skip homework and don’t copy homework solutions.
Each of you should think about all the problems on the
home work - do not divide and conquer.

4 Use pen and paper since that is what you will do in exams
which count for 75% of the grade. Keep a note book.

5 Study regularly and keep up with the course.

6 This is a course on problem solving. Solve as many as you
can! Books/notes have plenty.

7 This is also a course on providing rigorous proofs of
correctness. Refresh your 173 background on proofs.

8 Ask for help promptly. Make use of office hours/Piazza.

11



Homework 0

1 HW 0 is posted on the class website. Quiz 0 available on
Moodle.

2 HW 0 due Wednesday, September 6, 2017 at 10am on
Gradescope.

3 Groups of size up to 3.

12



Miscellaneous

Please contact instructors if you need special accommodations.

Lectures are being taped. See course webpage.

13



Part II

Course Goals and Overview

14



15



High-Level Questions

1 Modeling: States/Graphs/Recursion/Algorithms.
2 Algorithms

1 What is an algorithm?
2 What is an efficient algorithm?
3 Some fundamental algorithms for basic problems
4 Broadly applicable techniques in algorithm design

3 What is a mathematical definition of a computer?
1 Is there a formal definition?
2 Is there a “universal” computer?

4 What can computers compute?
1 Are there tasks that our computers cannot do?

15



Course Structure

Course divided into three parts:

1 Basic automata theory: finite state machines, regular
languages, hint of context free languages/grammars,
Turing Machines

2 Algorithms and algorithm design techniques

3 Undecidability and NP-Completeness, reductions to prove
intractability of problems

16



Goals

1 Algorithmic thinking
2 Learn/remember some basic tricks, algorithms, problems,

ideas

3 Understand/appreciate limits of computation
(intractability)

4 Appreciate the importance of algorithms in computer
science and beyond (engineering, mathematics, natural
sciences, social sciences, ...)

17



Historical motivation for computing

1 Fast (and automated) numerical calculations

2 Automating mathematical theorem proving

18



Models of Computation vs Computers

1 Model of Computation: an “idealized mathematical
construct” that describes the primitive instructions and
other details

2 Computer: an actual “physical device” that implements a
very specific model of computation

Models and devices:

1 Algorithms: usually at a high level in a model

2 Device construction: usually at a low level

3 Intermediaries: compilers

4 How precise? Depends on the problem!

5 Physics helps implement a model of computer

6 Physics also inspires models of computation

19



Models of Computation vs Computers

1 Model of Computation: an “idealized mathematical
construct” that describes the primitive instructions and
other details

2 Computer: an actual “physical device” that implements a
very specific model of computation

Models and devices:

1 Algorithms: usually at a high level in a model

2 Device construction: usually at a low level

3 Intermediaries: compilers

4 How precise? Depends on the problem!

5 Physics helps implement a model of computer

6 Physics also inspires models of computation

19



Adding Numbers

Problem Given two n-digit numbers x and y , compute
their sum.

Basic addition

3141
+7798
10939

20



Adding Numbers

c = 0
for i = 1 to n do

z = xi + yi
z = z + c
If (z > 10)

c = 1
z = z − 10 (equivalently the last digit of z)

Else c = 0
print z

End For

If (c == 1) print c

1 Primitive instruction is addition of two digits

2 Algorithm requires O(n) primitive instructions

21



Adding Numbers

c = 0
for i = 1 to n do

z = xi + yi
z = z + c
If (z > 10)

c = 1
z = z − 10 (equivalently the last digit of z)

Else c = 0
print z

End For

If (c == 1) print c

1 Primitive instruction is addition of two digits

2 Algorithm requires O(n) primitive instructions

21



Multiplying Numbers

Problem Given two n-digit numbers x and y , compute
their product.

Grade School Multiplication
Compute “partial product” by multiplying each digit of y with
x and adding the partial products.

3141
×2718
25128
3141

21987
6282
8537238

22



Time analysis of grade school multiplication

1 Each partial product: Θ(n) time

2 Number of partial products: ≤ n
3 Adding partial products: n additions each Θ(n) (Why?)

4 Total time: Θ(n2)

5 Is there a faster way?

23



Fast Multiplication

Best known algorithm: O(n log n · 2O(log∗ n)) time [Furer
2008]

Previous best time: O(n log n log log n) [Schonhage-Strassen
1971]

Conjecture: there exists an O(n log n) time algorithm

We don’t fully understand multiplication!
Computation and algorithm design is non-trivial!

24



Fast Multiplication

Best known algorithm: O(n log n · 2O(log∗ n)) time [Furer
2008]

Previous best time: O(n log n log log n) [Schonhage-Strassen
1971]

Conjecture: there exists an O(n log n) time algorithm

We don’t fully understand multiplication!
Computation and algorithm design is non-trivial!

24



Post Correspondence Problem

Given: Dominoes, each with a top-word and a bottom-word.

b

bbb

ba

bbb

abb

a

abb

baa

a

ab

Can one arrange them, using any number of copies of each
type, so that the top and bottom strings are equal?

abb

a

ba

bbb

abb

a

a

ab

abb

baa

b

bbb

25



Halting Problem

Debugging problem: Given a program M and string x , does
M halt when started on input x?

Simpler problem: Given a program M , does M halt when it
is started? Equivalently, will it print “Hello World”?

One can prove that there is no algorithm for the above two
problems!

26



Halting Problem

Debugging problem: Given a program M and string x , does
M halt when started on input x?

Simpler problem: Given a program M , does M halt when it
is started? Equivalently, will it print “Hello World”?

One can prove that there is no algorithm for the above two
problems!

26



Halting Problem

Debugging problem: Given a program M and string x , does
M halt when started on input x?

Simpler problem: Given a program M , does M halt when it
is started? Equivalently, will it print “Hello World”?

One can prove that there is no algorithm for the above two
problems!

26


	Administrivia
	Course Goals and Overview
	Addition and Multiplication


