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Recursion

Reduction:
Reduce one problem to another

Recursion
A special case of reduction

1 reduce problem to a smaller instance of itself

2 self-reduction

1 Problem instance of size n is reduced to one or more instances
of size n − 1 or less.

2 For termination, problem instances of small size are solved by
some other method as base cases.
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Recursion in Algorithm Design

1 Tail Recursion: problem reduced to a single recursive call after
some work. Easy to convert algorithm into iterative or greedy
algorithms. Examples: Interval scheduling, MST algorithms, etc.

2 Divide and Conquer: Problem reduced to multiple
independent sub-problems that are solved separately. Conquer
step puts together solution for bigger problem.

Examples: Closest pair, deterministic median selection, quick
sort.

3 Backtracking: Refinement of brute force search. Build solution
incrementally by invoking recursion to try all possibilities for the
decision in each step.

4 Dynamic Programming: problem reduced to multiple
(typically) dependent or overlapping sub-problems. Use
memoization to avoid recomputation of common solutions
leading to iterative bottom-up algorithm.
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Part I

Brute Force Search, Recursion and
Backtracking
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Maximum Independent Set in a Graph

Definition
Given undirected graph G = (V ,E) a subset of nodes S ⊆ V is an
independent set (also called a stable set) if for there are no edges
between nodes in S . That is, if u, v ∈ S then (u, v) 6∈ E .
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F

Some independent sets in graph above: {D}, {A,C}, {B,E ,F}
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Maximum Independent Set Problem

Input Graph G = (V ,E)

Goal Find maximum sized independent set in G
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Maximum Weight Independent Set Problem

Input Graph G = (V ,E), weights w(v) ≥ 0 for v ∈ V
Goal Find maximum weight independent set in G
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Maximum Weight Independent Set Problem

1 No one knows an efficient (polynomial time) algorithm for this
problem

2 Problem is NP-Complete and it is believed that there is no
polynomial time algorithm

Brute-force algorithm:
Try all subsets of vertices.
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Brute-force enumeration

Algorithm to find the size of the maximum weight independent set.

MaxIndSet(G = (V ,E)):
max = 0
for each subset S ⊆ V do

check if S is an independent set

if S is an independent set and w(S) > max then
max = w(S)

Output max

Running time: suppose G has n vertices and m edges

1 2n subsets of V
2 checking each subset S takes O(m) time

3 total time is O(m2n)
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A Recursive Algorithm

Let V = {v1, v2, . . . , vn}.
For a vertex u let N(u) be its neighbors.

Observation
v1: vertex in the graph.
One of the following two cases is true

Case 1 v1 is in some maximum independent set.

Case 2 v1 is in no maximum independent set.

We can try both cases to “reduce” the size of the problem

G1 = G − v1 obtained by removing v1 and incident edges from G
G2 = G − v1 − N(v1) obtained by removing N(v1) ∪ v1 from G

MIS(G) = max{MIS(G1),MIS(G2) + w(v1)}
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A Recursive Algorithm

RecursiveMIS(G):

if G is empty then Output 0
a = RecursiveMIS(G − v1)
b = w(v1) + RecursiveMIS(G − v1 − N(vn))
Output max(a, b)
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Example
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Recursive Algorithms
..for Maximum Independent Set

Running time:

T (n) = T (n − 1) + T
(
n − 1− deg(v1)

)
+ O(1 + deg(v1))

where deg(v1) is the degree of v1. T (0) = T (1) = 1 is base case.

Worst case is when deg(v1) = 0 when the recurrence becomes

T (n) = 2T (n − 1) + O(1)

Solution to this is T (n) = O(2n).
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Backtrack Search via Recursion

1 Recursive algorithm generates a tree of computation where each
node is a smaller problem (subproblem)

2 Simple recursive algorithm computes/explores the whole tree
blindly in some order.

3 Backtrack search is a way to explore the tree intelligently to
prune the search space

1 Some subproblems may be so simple that we can stop the
recursive algorithm and solve it directly by some other method

2 Memoization to avoid recomputing same problem
3 Stop the recursion at a subproblem if it is clear that there is no

need to explore further.
4 Leads to a number of heuristics that are widely used in practice

although the worst case running time may still be exponential.
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Sequences

Definition
Sequence: an ordered list a1, a2, . . . , an. Length of a sequence is
number of elements in the list.

Definition
ai1, . . . , aik is a subsequence of a1, . . . , an if
1 ≤ i1 < i2 < . . . < ik ≤ n.

Definition
A sequence is increasing if a1 < a2 < . . . < an. It is
non-decreasing if a1 ≤ a2 ≤ . . . ≤ an. Similarly decreasing and
non-increasing.
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Sequences
Example...

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1, 9

2 Subsequence of above sequence: 5, 2, 1

3 Increasing sequence: 3, 5, 9, 17, 54

4 Decreasing sequence: 34, 21, 7, 5, 1

5 Increasing subsequence of the first sequence: 2, 7, 9.
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Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of
maximum length

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

3 Longest increasing subsequence: 3, 5, 7, 8
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Näıve Enumeration

Assume a1, a2, . . . , an is contained in an array A
algLISNaive(A[1..n]):

max = 0
for each subsequence B of A do

if B is increasing and |B| > max then
max = |B|

Output max

Running time: O(n2n).
2n subsequences of a sequence of length n and O(n) time to check
if a given sequence is increasing.
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Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
1 Case 1: Does not contain A[n] in which case

LIS(A[1..n]) = LIS(A[1..(n − 1)])
2 Case 2: contains A[n] in which case LIS(A[1..n]) is not so

clear.

Observation
For second case we want to find a subsequence in A[1..(n − 1)]
that is restricted to numbers less than A[n]. This suggests that a
more general problem is LIS smaller(A[1..n], x) which gives the
longest increasing subsequence in A where each number in the
sequence is less than x .
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Recursive Approach

LIS smaller(A[1..n], x) : length of longest increasing subsequence
in A[1..n] with all numbers in subsequence less than x

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)
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Example

Sequence: A[1..7] = 6, 3, 5, 2, 7, 8, 1
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