
Algorithms & Models of Computation
CS/ECE 374, Fall 2017

Dynamic Programming
Lecture 13
Thursday, October 12, 2017

Sariel Har-Peled (UIUC) CS374 1 Fall 2017 1 / 50

Part I

Recursion and Memoization

Sariel Har-Peled (UIUC) CS374 2 Fall 2017 2 / 50

Fibonacci Numbers

Fibonacci numbers defined by recurrence:

F (n) = F (n − 1) + F (n − 2) and F (0) = 0,F (1) = 1.

These numbers have many interesting and amazing properties.
A journal The Fibonacci Quarterly!

1 F (n) = (φn − (1− φ)n)/
√

5 where φ is the golden ratio

(1 +
√

5)/2 ' 1.618.

2 limn→∞F (n + 1)/F (n) = φ

Sariel Har-Peled (UIUC) CS374 3 Fall 2017 3 / 50

How many bits?

Consider the nth Fibonacci number F (n). Writing the number F (n)
in base 2 requires

(A) Θ(n2) bits.

(B) Θ(n) bits.

(C) Θ(log n) bits.

(D) Θ(log log n) bits.

Sariel Har-Peled (UIUC) CS374 4 Fall 2017 4 / 50

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

Sariel Har-Peled (UIUC) CS374 5 Fall 2017 5 / 50

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

Sariel Har-Peled (UIUC) CS374 5 Fall 2017 5 / 50

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

Sariel Har-Peled (UIUC) CS374 5 Fall 2017 5 / 50

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

Roughly same as F (n)

T (n) = Θ(φn)

The number of additions is exponential in n. Can we do better?
Sariel Har-Peled (UIUC) CS374 5 Fall 2017 5 / 50

Recursion tree for the Recursive Fibonacci

10

Sariel Har-Peled (UIUC) CS374 6 Fall 2017 6 / 50

Recursion tree for the Recursive Fibonacci

10 2

0 1

Sariel Har-Peled (UIUC) CS374 6 Fall 2017 6 / 50

Recursion tree for the Recursive Fibonacci

10

1

3

2

0 1

2

0 1

Sariel Har-Peled (UIUC) CS374 6 Fall 2017 6 / 50

Recursion tree for the Recursive Fibonacci

10

1

3

2

0 1

2

0 1

1

3

2

0 1

2

0 1

4

Sariel Har-Peled (UIUC) CS374 6 Fall 2017 6 / 50

Recursion tree for the Recursive Fibonacci

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

Sariel Har-Peled (UIUC) CS374 6 Fall 2017 6 / 50

Recursion tree for the Recursive Fibonacci

1

3

2

0 1

2

0 1

4

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

1

3

2

0 1

2

0 1

4

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

6

Sariel Har-Peled (UIUC) CS374 6 Fall 2017 6 / 50

Recursion tree for the Recursive Fibonacci

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

1

3

2

0 1

2

0 1

4

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

6

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

1

3

2

0 1

2

0 1

4

1

3

2

0 1 1

3

2

0 1

2

0 1

4

5

6

7

Sariel Har-Peled (UIUC) CS374 6 Fall 2017 6 / 50

An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

F [0] = 0
F [1] = 1
for i = 2 to n do

F [i] = F [i − 1] + F [i − 2]
return F [n]

What is the running time of the algorithm? O(n) additions.

Sariel Har-Peled (UIUC) CS374 7 Fall 2017 7 / 50

An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

F [0] = 0
F [1] = 1
for i = 2 to n do

F [i] = F [i − 1] + F [i − 2]
return F [n]

What is the running time of the algorithm? O(n) additions.

Sariel Har-Peled (UIUC) CS374 7 Fall 2017 7 / 50

An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

F [0] = 0
F [1] = 1
for i = 2 to n do

F [i] = F [i − 1] + F [i − 2]
return F [n]

What is the running time of the algorithm? O(n) additions.

Sariel Har-Peled (UIUC) CS374 7 Fall 2017 7 / 50

What is the difference?

1 Recursive algorithm is computing the same numbers again and
again.

2 Iterative algorithm is storing computed values and building
bottom up the final value. Memoization.

Dynamic Programming:

Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is
polynomial in input size.

Sariel Har-Peled (UIUC) CS374 8 Fall 2017 8 / 50

What is the difference?

1 Recursive algorithm is computing the same numbers again and
again.

2 Iterative algorithm is storing computed values and building
bottom up the final value. Memoization.

Dynamic Programming:

Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is
polynomial in input size.

Sariel Har-Peled (UIUC) CS374 8 Fall 2017 8 / 50

What is the difference?

1 Recursive algorithm is computing the same numbers again and
again.

2 Iterative algorithm is storing computed values and building
bottom up the final value. Memoization.

Dynamic Programming:

Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is
polynomial in input size.

Sariel Har-Peled (UIUC) CS374 8 Fall 2017 8 / 50

Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n):
if (n = 0)

return 0
if (n = 1)

return 1
if (Fib(n) was previously computed)

return stored value of Fib(n)

else
return Fib(n − 1) + Fib(n − 2)

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)

Sariel Har-Peled (UIUC) CS374 9 Fall 2017 9 / 50

Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n):
if (n = 0)

return 0
if (n = 1)

return 1
if (Fib(n) was previously computed)

return stored value of Fib(n)

else
return Fib(n − 1) + Fib(n − 2)

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)

Sariel Har-Peled (UIUC) CS374 9 Fall 2017 9 / 50

Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n):
if (n = 0)

return 0
if (n = 1)

return 1
if (Fib(n) was previously computed)

return stored value of Fib(n)

else
return Fib(n − 1) + Fib(n − 2)

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)

Sariel Har-Peled (UIUC) CS374 9 Fall 2017 9 / 50

Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n):
if (n = 0)

return 0
if (n = 1)

return 1
if (Fib(n) was previously computed)

return stored value of Fib(n)

else
return Fib(n − 1) + Fib(n − 2)

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)

Sariel Har-Peled (UIUC) CS374 9 Fall 2017 9 / 50

Automatic implicit memoization

Initialize a (dynamic) dictionary data structure D to empty

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (n is already in D)

return value stored with n in D
val ⇐ Fib(n − 1) + Fib(n − 2)
Store (n, val) in D
return val

Use hash-table or a map to remember which values were already
computed.

Sariel Har-Peled (UIUC) CS374 10 Fall 2017 10 / 50

Automatic explicit memoization

1 Initialize table/array M of size n: M[i] = −1 for
i = 0, . . . , n.

2 Resulting code:
Fib(n):

if (n = 0)
return 0

if (n = 1)
return 1

if (M[n] 6= −1) // M[n]: stored value of Fib(n)
return M[n]

M[n]⇐ Fib(n − 1) + Fib(n − 2)
return M[n]

3 Need to know upfront the number of subproblems to allocate
memory.

Sariel Har-Peled (UIUC) CS374 11 Fall 2017 11 / 50

Automatic explicit memoization

1 Initialize table/array M of size n: M[i] = −1 for
i = 0, . . . , n.

2 Resulting code:
Fib(n):

if (n = 0)
return 0

if (n = 1)
return 1

if (M[n] 6= −1) // M[n]: stored value of Fib(n)
return M[n]

M[n]⇐ Fib(n − 1) + Fib(n − 2)
return M[n]

3 Need to know upfront the number of subproblems to allocate
memory.

Sariel Har-Peled (UIUC) CS374 11 Fall 2017 11 / 50

Automatic explicit memoization

1 Initialize table/array M of size n: M[i] = −1 for
i = 0, . . . , n.

2 Resulting code:
Fib(n):

if (n = 0)
return 0

if (n = 1)
return 1

if (M[n] 6= −1) // M[n]: stored value of Fib(n)
return M[n]

M[n]⇐ Fib(n − 1) + Fib(n − 2)
return M[n]

3 Need to know upfront the number of subproblems to allocate
memory.

Sariel Har-Peled (UIUC) CS374 11 Fall 2017 11 / 50

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

Sariel Har-Peled (UIUC) CS374 12 Fall 2017 12 / 50

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

Sariel Har-Peled (UIUC) CS374 12 Fall 2017 12 / 50

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

7

Sariel Har-Peled (UIUC) CS374 12 Fall 2017 12 / 50

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

65

7

Sariel Har-Peled (UIUC) CS374 12 Fall 2017 12 / 50

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

3

5

7

Sariel Har-Peled (UIUC) CS374 12 Fall 2017 12 / 50

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

5

7

Sariel Har-Peled (UIUC) CS374 12 Fall 2017 12 / 50

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

2

5

7

Sariel Har-Peled (UIUC) CS374 12 Fall 2017 12 / 50

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

0

2

5

7

Sariel Har-Peled (UIUC) CS374 12 Fall 2017 12 / 50

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

0

2

1

5

7

Sariel Har-Peled (UIUC) CS374 12 Fall 2017 12 / 50

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

0

2

1

5

4

7

Sariel Har-Peled (UIUC) CS374 12 Fall 2017 12 / 50

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

0

2

1

5

2

4

7

Sariel Har-Peled (UIUC) CS374 12 Fall 2017 12 / 50

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

0

2

1

5

2 3

4

7

Sariel Har-Peled (UIUC) CS374 12 Fall 2017 12 / 50

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

0

2

1

5

2 3

4

7

6

Sariel Har-Peled (UIUC) CS374 12 Fall 2017 12 / 50

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

0

2

1

5

2 3

4

7

4

6

Sariel Har-Peled (UIUC) CS374 12 Fall 2017 12 / 50

Recursion tree for the memoized Fib...

1

3

2

0 1 1

3

2

0 1

2

0 1

4

1

3

2

0 1

2

0 10 1 1 2

0 1

1

3

0

2

1

5

2 3

4

7

4 5

6

1

3

0

2

1

5

2 3

4

7

4 5

6

Sariel Har-Peled (UIUC) CS374 12 Fall 2017 12 / 50

Automatic Memoization

1 Recursive version:

f (x1, x2, . . . , xd):
CODE

2 Recursive version with memoization:

g(x1, x2, . . . , xd):
if f already computed for (x1, x2, . . . , xd) then

return value already computed

NEW CODE

3 NEW CODE:
1 Replaces any “return α” with
2 Remember “f (x1, . . . , xd) = α”; return α.

Sariel Har-Peled (UIUC) CS374 13 Fall 2017 13 / 50

Automatic Memoization

1 Recursive version:

f (x1, x2, . . . , xd):
CODE

2 Recursive version with memoization:

g(x1, x2, . . . , xd):
if f already computed for (x1, x2, . . . , xd) then

return value already computed

NEW CODE

3 NEW CODE:
1 Replaces any “return α” with
2 Remember “f (x1, . . . , xd) = α”; return α.

Sariel Har-Peled (UIUC) CS374 13 Fall 2017 13 / 50

Automatic Memoization

1 Recursive version:

f (x1, x2, . . . , xd):
CODE

2 Recursive version with memoization:

g(x1, x2, . . . , xd):
if f already computed for (x1, x2, . . . , xd) then

return value already computed

NEW CODE

3 NEW CODE:
1 Replaces any “return α” with
2 Remember “f (x1, . . . , xd) = α”; return α.

Sariel Har-Peled (UIUC) CS374 13 Fall 2017 13 / 50

Explicit vs Implicit Memoization

1 Explicit memoization (iterative algorithm) preferred:
1 analyze problem ahead of time
2 Allows for efficient memory allocation and access.

2 Implicit (automatic) memoization:
1 problem structure or algorithm is not well understood.
2 Need to pay overhead of data-structure.
3 Functional languages (e.g., LISP) automatically do

memoization, usually via hashing based dictionaries.

Sariel Har-Peled (UIUC) CS374 14 Fall 2017 14 / 50

Explicit vs Implicit Memoization

1 Explicit memoization (iterative algorithm) preferred:
1 analyze problem ahead of time
2 Allows for efficient memory allocation and access.

2 Implicit (automatic) memoization:
1 problem structure or algorithm is not well understood.
2 Need to pay overhead of data-structure.
3 Functional languages (e.g., LISP) automatically do

memoization, usually via hashing based dictionaries.

Sariel Har-Peled (UIUC) CS374 14 Fall 2017 14 / 50

Explicit vs Implicit Memoization

1 Explicit memoization (iterative algorithm) preferred:
1 analyze problem ahead of time
2 Allows for efficient memory allocation and access.

2 Implicit (automatic) memoization:
1 problem structure or algorithm is not well understood.
2 Need to pay overhead of data-structure.
3 Functional languages (e.g., LISP) automatically do

memoization, usually via hashing based dictionaries.

Sariel Har-Peled (UIUC) CS374 14 Fall 2017 14 / 50

Explicit vs Implicit Memoization

1 Explicit memoization (iterative algorithm) preferred:
1 analyze problem ahead of time
2 Allows for efficient memory allocation and access.

2 Implicit (automatic) memoization:
1 problem structure or algorithm is not well understood.
2 Need to pay overhead of data-structure.
3 Functional languages (e.g., LISP) automatically do

memoization, usually via hashing based dictionaries.

Sariel Har-Peled (UIUC) CS374 14 Fall 2017 14 / 50

Explicit vs Implicit Memoization

1 Explicit memoization (iterative algorithm) preferred:
1 analyze problem ahead of time
2 Allows for efficient memory allocation and access.

2 Implicit (automatic) memoization:
1 problem structure or algorithm is not well understood.
2 Need to pay overhead of data-structure.
3 Functional languages (e.g., LISP) automatically do

memoization, usually via hashing based dictionaries.

Sariel Har-Peled (UIUC) CS374 14 Fall 2017 14 / 50

Automatic explicit memoization

Initialize table/array M of size n such that M[i] = −1 for
i = 0, . . . , n.

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (M[n] 6= −1) (* M[n] has stored value of Fib(n) *)

return M[n]
M[n]⇐ Fib(n − 1) + Fib(n − 2)
return M[n]

To allocate memory need to know upfront the number of
subproblems for a given input size n

Sariel Har-Peled (UIUC) CS374 15 Fall 2017 15 / 50

Automatic explicit memoization

Initialize table/array M of size n such that M[i] = −1 for
i = 0, . . . , n.

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (M[n] 6= −1) (* M[n] has stored value of Fib(n) *)

return M[n]
M[n]⇐ Fib(n − 1) + Fib(n − 2)
return M[n]

To allocate memory need to know upfront the number of
subproblems for a given input size n

Sariel Har-Peled (UIUC) CS374 15 Fall 2017 15 / 50

Automatic implicit memoization

Initialize a (dynamic) dictionary data structure D to empty

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (n is already in D)

return value stored with n in D
val ⇐ Fib(n − 1) + Fib(n − 2)

Store (n, val) in D
return val

Sariel Har-Peled (UIUC) CS374 16 Fall 2017 16 / 50

Explicit vs Implicit Memoization

1 Explicit memoization or iterative algorithm preferred if one can
analyze problem ahead of time. Allows for efficient memory
allocation and access.

2 Implicit and automatic memoization used when problem
structure or algorithm is either not well understood or in fact
unknown to the underlying system.

1 Need to pay overhead of data-structure.
2 Functional languages such as LISP automatically do

memoization, usually via hashing based dictionaries.

Sariel Har-Peled (UIUC) CS374 17 Fall 2017 17 / 50

How many distinct calls?

binom(t, b) // computes
(t
b

)
if t = 0 then return 0

if b = t or b = 0 then return 1

return binom(t − 1, b − 1) + binom(t − 1, b).

How many distinct calls does binom(n, bn/2c) makes during its
recursive execution?

(A) Θ(1).

(B) Θ(n).

(C) Θ(n log n).

(D) Θ(n2).

(E) Θ
((n
bn/2c

))
.

That is, if the algorithm calls recursively binom(17, 5) about 5000
times during the computation, we count this is a single distinct call.

Sariel Har-Peled (UIUC) CS374 18 Fall 2017 18 / 50

Running time of memoized binom?

D: Initially an empty dictionary.

binomM(t, b) // computes
(t
b

)
if b = t then return 1

if b = 0 then return 0

if D[t, b] is defined then return D[t, b]
D[t, b]⇐ binomM(t − 1, b − 1) + binomM(t − 1, b).
return D[t, b]

Assuming that every arithmetic operation takes O(1) time, What is
the running time of binomM(n, bn/2c)?

(A) Θ(1).

(B) Θ(n).

(C) Θ(n2).

(D) Θ
(
n3

)
.

(E) Θ
((n
bn/2c

))
.

Sariel Har-Peled (UIUC) CS374 19 Fall 2017 19 / 50

Back to Fibonacci Numbers

Is the iterative algorithm a polynomial time algorithm? Does it take
O(n) time?

1 input is n and hence input size is Θ(log n)

2 output is F (n) and output size is Θ(n). Why?

3 Hence output size is exponential in input size so no polynomial
time algorithm possible!

4 Running time of iterative algorithm: Θ(n) additions but number
sizes are O(n) bits long! Hence total time is O(n2), in fact
Θ(n2). Why?

Sariel Har-Peled (UIUC) CS374 20 Fall 2017 20 / 50

Back to Fibonacci Numbers

Is the iterative algorithm a polynomial time algorithm? Does it take
O(n) time?

1 input is n and hence input size is Θ(log n)

2 output is F (n) and output size is Θ(n). Why?

3 Hence output size is exponential in input size so no polynomial
time algorithm possible!

4 Running time of iterative algorithm: Θ(n) additions but number
sizes are O(n) bits long! Hence total time is O(n2), in fact
Θ(n2). Why?

Sariel Har-Peled (UIUC) CS374 20 Fall 2017 20 / 50

Back to Fibonacci Numbers

Saving space. Do we need an array of n numbers? Not really.

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

prev2 = 0
prev1 = 1
for i = 2 to n do

temp = prev1 + prev2
prev2 = prev1
prev1 = temp

return prev1

Sariel Har-Peled (UIUC) CS374 21 Fall 2017 21 / 50

Part II

Dynamic programming

Sariel Har-Peled (UIUC) CS374 22 Fall 2017 22 / 50

Dynamic Programming

Dynamic Programming is smart recursion plus memoization

Question: Suppose we have a recursive program foo(x) that takes
an input x .

On input of size n the number of distinct sub-problems that
foo(x) generates is at most A(n)

foo(x) spends at most B(n) time not counting the time for its
recursive calls.

Suppose wememoize the recursion.
Assumption: Storing and retrieving solutions to pre-computed
problems takes O(1) time.
Q: What is an upper bound on the running time of memoized
version of foo(x) if |x| = n? O(A(n)B(n)).

Sariel Har-Peled (UIUC) CS374 23 Fall 2017 23 / 50

Dynamic Programming

Dynamic Programming is smart recursion plus memoization

Question: Suppose we have a recursive program foo(x) that takes
an input x .

On input of size n the number of distinct sub-problems that
foo(x) generates is at most A(n)

foo(x) spends at most B(n) time not counting the time for its
recursive calls.

Suppose wememoize the recursion.
Assumption: Storing and retrieving solutions to pre-computed
problems takes O(1) time.
Q: What is an upper bound on the running time of memoized
version of foo(x) if |x| = n? O(A(n)B(n)).

Sariel Har-Peled (UIUC) CS374 23 Fall 2017 23 / 50

Dynamic Programming

Dynamic Programming is smart recursion plus memoization

Question: Suppose we have a recursive program foo(x) that takes
an input x .

On input of size n the number of distinct sub-problems that
foo(x) generates is at most A(n)

foo(x) spends at most B(n) time not counting the time for its
recursive calls.

Suppose wememoize the recursion.
Assumption: Storing and retrieving solutions to pre-computed
problems takes O(1) time.
Q: What is an upper bound on the running time of memoized
version of foo(x) if |x| = n? O(A(n)B(n)).

Sariel Har-Peled (UIUC) CS374 23 Fall 2017 23 / 50

Dynamic Programming

Dynamic Programming is smart recursion plus memoization

Question: Suppose we have a recursive program foo(x) that takes
an input x .

On input of size n the number of distinct sub-problems that
foo(x) generates is at most A(n)

foo(x) spends at most B(n) time not counting the time for its
recursive calls.

Suppose wememoize the recursion.
Assumption: Storing and retrieving solutions to pre-computed
problems takes O(1) time.
Q: What is an upper bound on the running time of memoized
version of foo(x) if |x| = n? O(A(n)B(n)).

Sariel Har-Peled (UIUC) CS374 23 Fall 2017 23 / 50

Dynamic Programming

Dynamic Programming is smart recursion plus memoization

Question: Suppose we have a recursive program foo(x) that takes
an input x .

On input of size n the number of distinct sub-problems that
foo(x) generates is at most A(n)

foo(x) spends at most B(n) time not counting the time for its
recursive calls.

Suppose wememoize the recursion.
Assumption: Storing and retrieving solutions to pre-computed
problems takes O(1) time.
Q: What is an upper bound on the running time of memoized
version of foo(x) if |x| = n? O(A(n)B(n)).

Sariel Har-Peled (UIUC) CS374 23 Fall 2017 23 / 50

Part III

Checking if a string is in L∗

Sariel Har-Peled (UIUC) CS374 24 Fall 2017 24 / 50

Problem

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via
function IsStrInL(string x) that decides whether x is
in L

Goal Decide if w ∈ L∗ using IsStrInL(string x) as a black
box sub-routine

Sariel Har-Peled (UIUC) CS374 25 Fall 2017 25 / 50

Problem

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via
function IsStrInL(string x) that decides whether x is
in L

Goal Decide if w ∈ L* using IsStrInL(string x) as a
black box sub-routine

Sariel Har-Peled (UIUC) CS374 25 Fall 2017 25 / 50

Problem

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via
function IsStrInL(string x) that decides whether x is
in L

Goal Decide if w ∈ L* using IsStrInL(string x) as a
black box sub-routine

Sariel Har-Peled (UIUC) CS374 25 Fall 2017 25 / 50

Problem

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via
function IsStrInL(string x) that decides whether x is
in L

Goal Decide if w ∈ L*using
IsStrInL(string x) as a black box sub-routine

Sariel Har-Peled (UIUC) CS374 25 Fall 2017 25 / 50

Problem

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via
function IsStrInL(string x) that decides whether x is
in L

Goal Decide if w ∈ L*
using IsStrInL(string x) as a black box sub-routine

Sariel Har-Peled (UIUC) CS374 25 Fall 2017 25 / 50

Problem

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via
function IsStrInL(string x) that decides whether x is
in L

Goal Decide if w ∈ L∗ using IsStrInL(string x) as a black
box sub-routine

Sariel Har-Peled (UIUC) CS374 25 Fall 2017 25 / 50

Problem

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via
function IsStrInL(string x) that decides whether x is
in L

Goal Decide if using IsStrInL(string x) as a black box
sub-routine

Example
Suppose L is English and we have a procedure to check whether a
string/word is in the English dictionary.

Is the string “isthisanenglishsentence” in English∗?
Is “stampstamp” in English∗?
Is “zibzzzad” in English∗?

Sariel Har-Peled (UIUC) CS374 25 Fall 2017 25 / 50

Recursive Solution

When is w ∈ L∗?

a w ∈ L∗ if w ∈ L or if w = uv where u ∈ L and v ∈ L∗,
|u| ≥ 1

Assume w is stored in array A[1..n]

IsStringinLstar(A[1..n]):
If (n = 0) Output YES

If (IsStrInL(A[1..n]))
Output YES

Else

For (i = 1 to n − 1) do

If (IsStrInL(A[1..i]) and IsStrInLstar(A[i + 1..n]))
Output YES

Output NO

Sariel Har-Peled (UIUC) CS374 26 Fall 2017 26 / 50

Recursive Solution

When is w ∈ L∗?

a w ∈ L∗ if w ∈ L or if w = uv where u ∈ L and v ∈ L∗,
|u| ≥ 1

Assume w is stored in array A[1..n]

IsStringinLstar(A[1..n]):
If (n = 0) Output YES

If (IsStrInL(A[1..n]))
Output YES

Else

For (i = 1 to n − 1) do

If (IsStrInL(A[1..i]) and IsStrInLstar(A[i + 1..n]))
Output YES

Output NO

Sariel Har-Peled (UIUC) CS374 26 Fall 2017 26 / 50

Recursive Solution

When is w ∈ L∗?

a w ∈ L∗ if w ∈ L or if w = uv where u ∈ L and v ∈ L∗,
|u| ≥ 1

Assume w is stored in array A[1..n]

IsStringinLstar(A[1..n]):
If (n = 0) Output YES

If (IsStrInL(A[1..n]))
Output YES

Else

For (i = 1 to n − 1) do

If (IsStrInL(A[1..i]) and IsStrInLstar(A[i + 1..n]))
Output YES

Output NO

Sariel Har-Peled (UIUC) CS374 26 Fall 2017 26 / 50

Recursive Solution

Assume w is stored in array A[1..n]

IsStringinLstar(A[1..n]):
If (n = 0) Output YES

If (IsStrInL(A[1..n]))
Output YES

Else

For (i = 1 to n − 1) do

If (IsStrInL(A[1..i]) and IsStrInLstar(A[i + 1..n]))
Output YES

Output NO

Question: How many distinct sub-problems does
IsStrInLstar(A[1..n]) generate? O(n)

Sariel Har-Peled (UIUC) CS374 27 Fall 2017 27 / 50

Recursive Solution

Assume w is stored in array A[1..n]

IsStringinLstar(A[1..n]):
If (n = 0) Output YES

If (IsStrInL(A[1..n]))
Output YES

Else

For (i = 1 to n − 1) do

If (IsStrInL(A[1..i]) and IsStrInLstar(A[i + 1..n]))
Output YES

Output NO

Question: How many distinct sub-problems does
IsStrInLstar(A[1..n]) generate? O(n)

Sariel Har-Peled (UIUC) CS374 27 Fall 2017 27 / 50

Recursive Solution

Assume w is stored in array A[1..n]

IsStringinLstar(A[1..n]):
If (n = 0) Output YES

If (IsStrInL(A[1..n]))
Output YES

Else

For (i = 1 to n − 1) do

If (IsStrInL(A[1..i]) and IsStrInLstar(A[i + 1..n]))
Output YES

Output NO

Question: How many distinct sub-problems does
IsStrInLstar(A[1..n]) generate? O(n)

Sariel Har-Peled (UIUC) CS374 27 Fall 2017 27 / 50

Example

Consider string samiam

Sariel Har-Peled (UIUC) CS374 28 Fall 2017 28 / 50

Naming subproblems and recursive equation

After seeing that number of subproblems is O(n) we name them to
help us understand the structure better.

ISL(i): a boolean which is 1 if A[i ..n] is in L∗, 0 otherwise

Base case: ISL(n + 1) = 1 interpreting A[n + 1..n] as ε
Recursive relation:

ISL(i) = 1 if
∃i < j ≤ n + 1 s.t ISL(j) and IsStrInL(A[i ..(j − 1])

ISL(i) = 0 otherwise

Output: ISL(1)

Sariel Har-Peled (UIUC) CS374 29 Fall 2017 29 / 50

Naming subproblems and recursive equation

After seeing that number of subproblems is O(n) we name them to
help us understand the structure better.

ISL(i): a boolean which is 1 if A[i ..n] is in L∗, 0 otherwise

Base case: ISL(n + 1) = 1 interpreting A[n + 1..n] as ε
Recursive relation:

ISL(i) = 1 if
∃i < j ≤ n + 1 s.t ISL(j) and IsStrInL(A[i ..(j − 1])

ISL(i) = 0 otherwise

Output: ISL(1)

Sariel Har-Peled (UIUC) CS374 29 Fall 2017 29 / 50

Naming subproblems and recursive equation

After seeing that number of subproblems is O(n) we name them to
help us understand the structure better.

ISL(i): a boolean which is 1 if A[i ..n] is in L∗, 0 otherwise

Base case: ISL(n + 1) = 1 interpreting A[n + 1..n] as ε
Recursive relation:

ISL(i) = 1 if
∃i < j ≤ n + 1 s.t ISL(j) and IsStrInL(A[i ..(j − 1])

ISL(i) = 0 otherwise

Output: ISL(1)

Sariel Har-Peled (UIUC) CS374 29 Fall 2017 29 / 50

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often
convert the recursive algorithm into an iterative algorithm via explicit
memoization and bottom up computation.

Why? Mainly for further optimization of running time and space.

How?

First, allocate a data structure (usually an array or a
multi-dimensional array that can hold values for each of the
subproblems)

Figure out a way to order the computation of the sub-problems
starting from the base case.

Caveat: Dynamic programming is not about filling tables. It
is about finding a smart recursion. First, find the correct
recursion.

Sariel Har-Peled (UIUC) CS374 30 Fall 2017 30 / 50

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often
convert the recursive algorithm into an iterative algorithm via explicit
memoization and bottom up computation.

Why? Mainly for further optimization of running time and space.

How?

First, allocate a data structure (usually an array or a
multi-dimensional array that can hold values for each of the
subproblems)

Figure out a way to order the computation of the sub-problems
starting from the base case.

Caveat: Dynamic programming is not about filling tables. It
is about finding a smart recursion. First, find the correct
recursion.

Sariel Har-Peled (UIUC) CS374 30 Fall 2017 30 / 50

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often
convert the recursive algorithm into an iterative algorithm via explicit
memoization and bottom up computation.

Why? Mainly for further optimization of running time and space.

How?

First, allocate a data structure (usually an array or a
multi-dimensional array that can hold values for each of the
subproblems)

Figure out a way to order the computation of the sub-problems
starting from the base case.

Caveat: Dynamic programming is not about filling tables. It
is about finding a smart recursion. First, find the correct
recursion.

Sariel Har-Peled (UIUC) CS374 30 Fall 2017 30 / 50

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often
convert the recursive algorithm into an iterative algorithm via explicit
memoization and bottom up computation.

Why? Mainly for further optimization of running time and space.

How?

First, allocate a data structure (usually an array or a
multi-dimensional array that can hold values for each of the
subproblems)

Figure out a way to order the computation of the sub-problems
starting from the base case.

Caveat: Dynamic programming is not about filling tables. It
is about finding a smart recursion. First, find the correct
recursion.

Sariel Har-Peled (UIUC) CS374 30 Fall 2017 30 / 50

Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL[1..(n + 1)]
ISL[n + 1] = TRUE
for (i = n down to 1)

ISL[i] = FALSE
for (j = i + 1 to n + 1)

If (ISL[j] and IsStrInL(A[i ..j − 1]))
ISL[i] = TRUE
Break

If (ISL[1] = 1) Output YES

Else Output NO

Running time: O(n2) (assuming call to IsStrInL is O(1)
time)

Space: O(n)

Sariel Har-Peled (UIUC) CS374 31 Fall 2017 31 / 50

Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL[1..(n + 1)]
ISL[n + 1] = TRUE
for (i = n down to 1)

ISL[i] = FALSE
for (j = i + 1 to n + 1)

If (ISL[j] and IsStrInL(A[i ..j − 1]))
ISL[i] = TRUE
Break

If (ISL[1] = 1) Output YES

Else Output NO

Running time: O(n2) (assuming call to IsStrInL is O(1)
time)

Space: O(n)

Sariel Har-Peled (UIUC) CS374 31 Fall 2017 31 / 50

Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL[1..(n + 1)]
ISL[n + 1] = TRUE
for (i = n down to 1)

ISL[i] = FALSE
for (j = i + 1 to n + 1)

If (ISL[j] and IsStrInL(A[i ..j − 1]))
ISL[i] = TRUE
Break

If (ISL[1] = 1) Output YES

Else Output NO

Running time: O(n2) (assuming call to IsStrInL is O(1)
time)

Space: O(n)

Sariel Har-Peled (UIUC) CS374 31 Fall 2017 31 / 50

Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL[1..(n + 1)]
ISL[n + 1] = TRUE
for (i = n down to 1)

ISL[i] = FALSE
for (j = i + 1 to n + 1)

If (ISL[j] and IsStrInL(A[i ..j − 1]))
ISL[i] = TRUE
Break

If (ISL[1] = 1) Output YES

Else Output NO

Running time: O(n2) (assuming call to IsStrInL is O(1)
time)

Space: O(n)

Sariel Har-Peled (UIUC) CS374 31 Fall 2017 31 / 50

Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL[1..(n + 1)]
ISL[n + 1] = TRUE
for (i = n down to 1)

ISL[i] = FALSE
for (j = i + 1 to n + 1)

If (ISL[j] and IsStrInL(A[i ..j − 1]))
ISL[i] = TRUE
Break

If (ISL[1] = 1) Output YES

Else Output NO

Running time: O(n2) (assuming call to IsStrInL is O(1)
time)

Space: O(n)

Sariel Har-Peled (UIUC) CS374 31 Fall 2017 31 / 50

Example

Consider string samiam

Sariel Har-Peled (UIUC) CS374 32 Fall 2017 32 / 50

Part IV

Longest Increasing Subsequence

Sariel Har-Peled (UIUC) CS374 33 Fall 2017 33 / 50

Sequences

Definition
Sequence: an ordered list a1, a2, . . . , an. Length of a sequence is
number of elements in the list.

Definition
ai1, . . . , aik is a subsequence of a1, . . . , an if
1 ≤ i1 < i2 < . . . < ik ≤ n.

Definition
A sequence is increasing if a1 < a2 < . . . < an. It is
non-decreasing if a1 ≤ a2 ≤ . . . ≤ an. Similarly decreasing and
non-increasing.

Sariel Har-Peled (UIUC) CS374 34 Fall 2017 34 / 50

Sequences
Example...

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1, 9

2 Subsequence of above sequence: 5, 2, 1

3 Increasing sequence: 3, 5, 9, 17, 54

4 Decreasing sequence: 34, 21, 7, 5, 1

5 Increasing subsequence of the first sequence: 2, 7, 9.

Sariel Har-Peled (UIUC) CS374 35 Fall 2017 35 / 50

Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of
maximum length

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

3 Longest increasing subsequence: 3, 5, 7, 8

Sariel Har-Peled (UIUC) CS374 36 Fall 2017 36 / 50

Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of
maximum length

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

3 Longest increasing subsequence: 3, 5, 7, 8

Sariel Har-Peled (UIUC) CS374 36 Fall 2017 36 / 50

Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
1 Case 1: Does not contain A[n] in which case

LIS(A[1..n]) = LIS(A[1..(n − 1)])
2 Case 2: contains A[n] in which case LIS(A[1..n]) is not so

clear.

Observation
For second case we want to find a subsequence in A[1..(n − 1)]
that is restricted to numbers less than A[n]. This suggests that a
more general problem is LIS smaller(A[1..n], x) which gives the
longest increasing subsequence in A where each number in the
sequence is less than x .

Sariel Har-Peled (UIUC) CS374 37 Fall 2017 37 / 50

Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
1 Case 1: Does not contain A[n] in which case

LIS(A[1..n]) = LIS(A[1..(n − 1)])
2 Case 2: contains A[n] in which case LIS(A[1..n]) is not so

clear.

Observation
For second case we want to find a subsequence in A[1..(n − 1)]
that is restricted to numbers less than A[n]. This suggests that a
more general problem is LIS smaller(A[1..n], x) which gives the
longest increasing subsequence in A where each number in the
sequence is less than x .

Sariel Har-Peled (UIUC) CS374 37 Fall 2017 37 / 50

Recursive Approach

LIS(A[1..n]): the length of longest increasing subsequence in A

LIS smaller(A[1..n], x): length of longest increasing subsequence
in A[1..n] with all numbers in subsequence less than x

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

Sariel Har-Peled (UIUC) CS374 38 Fall 2017 38 / 50

Example

Sequence: A[1..7] = 6, 3, 5, 2, 7, 8, 1

Sariel Har-Peled (UIUC) CS374 39 Fall 2017 39 / 50

Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

How many distinct sub-problems will LIS smaller(A[1..n],∞)
generate? O(n2)

What is the running time if we memoize recursion? O(n2) since
each call takes O(1) time to assemble the answers from to
recursive calls and no other computation.

How much space for memoization? O(n2)

Sariel Har-Peled (UIUC) CS374 40 Fall 2017 40 / 50

Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

How many distinct sub-problems will LIS smaller(A[1..n],∞)
generate? O(n2)

What is the running time if we memoize recursion? O(n2) since
each call takes O(1) time to assemble the answers from to
recursive calls and no other computation.

How much space for memoization? O(n2)

Sariel Har-Peled (UIUC) CS374 40 Fall 2017 40 / 50

Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

How many distinct sub-problems will LIS smaller(A[1..n],∞)
generate? O(n2)

What is the running time if we memoize recursion? O(n2) since
each call takes O(1) time to assemble the answers from to
recursive calls and no other computation.

How much space for memoization? O(n2)

Sariel Har-Peled (UIUC) CS374 40 Fall 2017 40 / 50

Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

How many distinct sub-problems will LIS smaller(A[1..n],∞)
generate? O(n2)

What is the running time if we memoize recursion? O(n2) since
each call takes O(1) time to assemble the answers from to
recursive calls and no other computation.

How much space for memoization? O(n2)

Sariel Har-Peled (UIUC) CS374 40 Fall 2017 40 / 50

Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

How many distinct sub-problems will LIS smaller(A[1..n],∞)
generate? O(n2)

What is the running time if we memoize recursion? O(n2) since
each call takes O(1) time to assemble the answers from to
recursive calls and no other computation.

How much space for memoization? O(n2)

Sariel Har-Peled (UIUC) CS374 40 Fall 2017 40 / 50

Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

How many distinct sub-problems will LIS smaller(A[1..n],∞)
generate? O(n2)

What is the running time if we memoize recursion? O(n2) since
each call takes O(1) time to assemble the answers from to
recursive calls and no other computation.

How much space for memoization? O(n2)

Sariel Har-Peled (UIUC) CS374 40 Fall 2017 40 / 50

Naming subproblems and recursive equation

After seeing that number of subproblems is O(n2) we name them to
help us understand the structure better. For notational ease we add
∞ at end of array (in position n + 1)

LIS(i , j): length of longest increasing sequence in A[1..i] among
numbers less than A[j] (defined only for i < j)

Base case: LIS(0, j) = 0 for 1 ≤ j ≤ n + 1
Recursive relation:

LIS(i , j) = LIS(i − 1, j) if A[i] > A[j]
LIS(i , j) = max{LIS(i − 1, j), 1 + LIS(i − 1, i)} if
A[i] ≤ A[j]

Output: LIS(n, n + 1)

Sariel Har-Peled (UIUC) CS374 41 Fall 2017 41 / 50

Naming subproblems and recursive equation

After seeing that number of subproblems is O(n2) we name them to
help us understand the structure better. For notational ease we add
∞ at end of array (in position n + 1)

LIS(i , j): length of longest increasing sequence in A[1..i] among
numbers less than A[j] (defined only for i < j)

Base case: LIS(0, j) = 0 for 1 ≤ j ≤ n + 1
Recursive relation:

LIS(i , j) = LIS(i − 1, j) if A[i] > A[j]
LIS(i , j) = max{LIS(i − 1, j), 1 + LIS(i − 1, i)} if
A[i] ≤ A[j]

Output: LIS(n, n + 1)

Sariel Har-Peled (UIUC) CS374 41 Fall 2017 41 / 50

Iterative algorithm

LIS-Iterative(A[1..n]):
A[n + 1] =∞
int LIS[0..n, 1..n + 1]
for (j = 1 to n + 1) do

LIS[0, j] = 0

for (i = 1 to n) do

for (j = i + 1 to n)
If (A[i] > A[j]) LIS[i , j] = LIS[i − 1, j]
Else LIS[i , j] = max{LIS[i − 1, j], 1 + LIS[i − 1, i]}

Return LIS[n, n + 1]

Running time: O(n2)
Space: O(n2)

Sariel Har-Peled (UIUC) CS374 42 Fall 2017 42 / 50

How to order bottom up computation?

C
S

37
4

For i<j

1 2 3 4 n+1

0

1

2

3

n

i

j

Base case: LIS(0, j) = 0 for 1 ≤ j ≤ n + 1
Recursive relation:

LIS(i , j) = LIS(i − 1, j) if A[i] > A[j]

LIS(i , j) = max{LIS(i − 1, j), 1 + LIS(i − 1, i)} if A[i] ≤ A[j]

Sariel Har-Peled (UIUC) CS374 43 Fall 2017 43 / 50

How to order bottom up computation?

Sequence: A[1..7] = 6, 3, 5, 2, 7, 8, 1

C
S

37
4

For i<j

1 2 3 4 n+1

0

1

2

3

n

i

j

Sariel Har-Peled (UIUC) CS374 44 Fall 2017 44 / 50

Two comments

Question: Can we compute an optimum solution and not just its
value?
Yes! See notes.

Question: Is there a faster algorithm for LIS? Yes! Using a different
recursion and optimizing one can obtain an O(n log n) time and
O(n) space algorithm. O(n log n) time is not obvious. Depends on
improving time by using data structures on top of dynamic
programming.

Sariel Har-Peled (UIUC) CS374 45 Fall 2017 45 / 50

Two comments

Question: Can we compute an optimum solution and not just its
value?
Yes! See notes.

Question: Is there a faster algorithm for LIS? Yes! Using a different
recursion and optimizing one can obtain an O(n log n) time and
O(n) space algorithm. O(n log n) time is not obvious. Depends on
improving time by using data structures on top of dynamic
programming.

Sariel Har-Peled (UIUC) CS374 45 Fall 2017 45 / 50

Two comments

Question: Can we compute an optimum solution and not just its
value?
Yes! See notes.

Question: Is there a faster algorithm for LIS? Yes! Using a different
recursion and optimizing one can obtain an O(n log n) time and
O(n) space algorithm. O(n log n) time is not obvious. Depends on
improving time by using data structures on top of dynamic
programming.

Sariel Har-Peled (UIUC) CS374 45 Fall 2017 45 / 50

Dynamic Programming

1 Find a “smart” recursion for the problem in which the number of
distinct subproblems is small; polynomial in the original problem
size.

2 Estimate the number of subproblems, the time to evaluate each
subproblem and the space needed to store the value. This gives
an upper bound on the total running time if we use automatic
memoization.

3 Eliminate recursion and find an iterative algorithm to compute
the problems bottom up by storing the intermediate values in an
appropriate data structure; need to find the right way or order
the subproblem evaluation. This leads to an explicit algorithm.

4 Optimize the resulting algorithm further

Sariel Har-Peled (UIUC) CS374 46 Fall 2017 46 / 50

Part V

Some experiments with memoization

Sariel Har-Peled (UIUC) CS374 47 Fall 2017 47 / 50

Edit distance: different memoizations

Input size Running time in seconds
n DP Partial Implicit memoization

1, 250 0.01 0.04 0.20
2, 500 0.04 0.15 0.84
5, 000 0.18 0.64 3.73

10, 000 0.72 2.50 15.05
20, 000 2.88 9.91 55.35
40, 000 12.00 40.00 out of memory

For the input n, two random strings of length n were generated, and
their distance computed using edit distance.
Note, that edit-distance is simple enough to that DP gets very good
performance. For more complicated problems, the advantage of DP
would probably be much smaller.
The asymptotic running time here is Θ(n2).

Sariel Har-Peled (UIUC) CS374 48 Fall 2017 48 / 50

Edit distance: different memoizations
More details

1 The implementation was done in C++, using -O9 in compilation.

2 DP = Dynamic Programming = iterative implementation using
arrays.

3 Partial memoization = Still uses recursive code, but remembers
the results in tables that are managed directly by the code.

4 Implicit memoization = implemented using the standard
unordered map.

Sariel Har-Peled (UIUC) CS374 49 Fall 2017 49 / 50

Edit distance: different memoizations
Conclusions

1 If you are in interview setup, you should probably solve the
problem using DP. That what you would be expected to do.

2 Otherwise, I would probably implement partial memoization – it
still has the simplicity of the recursive solution, while having a
decent performance. If I really care about performance I would
implement the DP.

3 Using implicit memoization probably makes sense only if running
time is not really an issue.

Sariel Har-Peled (UIUC) CS374 50 Fall 2017 50 / 50

	Recursion and Memoization
	Fibonacci Numbers

	Dynamic programming
	Checking if a string is in L*
	Longest Increasing Subsequence
	Longest Increasing Subsequence

	Some experiments with memoization

