# **Even More on Dynamic Programming**

Lecture 15 Thursday, October 19, 2017

## Part I

# Longest Common Subsequence Problem

#### The $\overline{ ext{LCS Problem}}$

#### Definition

**LCS** between two strings **X** and **Y** is the length of longest common subsequence between  $\boldsymbol{X}$  and  $\boldsymbol{Y}$ .

### Example

LCS between ABAZDC and BACBAD is 4 via ABAD

#### The $ext{LCS}$ Problem

#### **Definition**

**LCS** between two strings  $\boldsymbol{X}$  and  $\boldsymbol{Y}$  is the length of longest common subsequence between  $\boldsymbol{X}$  and  $\boldsymbol{Y}$ .

### Example

LCS between ABAZDC and BACBAD is4 via ABAD

Derive a dynamic programming algorithm for the problem

#### The $\overline{ ext{LCS Problem}}$

#### Definition

**LCS** between two strings **X** and **Y** is the length of longest common subsequence between **X** and **Y**.

## Example

LCS between ABAZDC and BACBAD is 4 via ABAD

Derive a dynamic programming algorithm for the problem.

## Part II

# Maximum Weighted Independent Set in Trees

## Maximum Weight Independent Set Problem

Input Graph G = (V, E) and weights  $w(v) \geq 0$  for each  $v \in V$ 

Goal Find maximum weight independent set in G



Maximum weight independent set in above graph:  $\{B, D\}$ 

## Maximum Weight Independent Set Problem

Input Graph G = (V, E) and weights  $w(v) \geq 0$  for each  $v \in V$ 

Goal Find maximum weight independent set in G



Maximum weight independent set in above graph:  $\{B, D\}$ 

## Maximum Weight Independent Set in a Tree

Input Tree T=(V,E) and weights  $w(v)\geq 0$  for each  $v\in V$ 

Goal Find maximum weight independent set in T



Maximum weight independent set in above tree: ??

#### For an arbitrary graph **G**:

- **1** Number vertices as  $v_1, v_2, \ldots, v_n$
- ② Find recursively optimum solutions without  $v_n$  (recurse on  $G v_n$ ) and with  $v_n$  (recurse on  $G v_n N(v_n)$  & include  $v_n$ ).
- Saw that if graph G is arbitrary there was no good ordering that resulted in a small number of subproblems.

What about a tree? Natural candidate for  $v_n$  is root r of T?

For an arbitrary graph **G**:

- **1** Number vertices as  $v_1, v_2, \ldots, v_n$
- ② Find recursively optimum solutions without  $v_n$  (recurse on  $G v_n$ ) and with  $v_n$  (recurse on  $G v_n N(v_n)$  & include  $v_n$ ).
- Saw that if graph G is arbitrary there was no good ordering that resulted in a small number of subproblems.

What about a tree? Natural candidate for  $v_n$  is root r of T?

For an arbitrary graph **G**:

- 1 Number vertices as  $v_1, v_2, \ldots, v_n$
- ② Find recursively optimum solutions without  $v_n$  (recurse on  $G v_n$ ) and with  $v_n$  (recurse on  $G v_n N(v_n)$  & include  $v_n$ ).
- Saw that if graph G is arbitrary there was no good ordering that resulted in a small number of subproblems.

What about a tree? Natural candidate for  $v_n$  is root r of T?

Natural candidate for  $v_n$  is root r of T? Let  $\mathcal{O}$  be an optimum solution to the whole problem.

Case  $r \not\in \mathcal{O}$ : Then  $\mathcal{O}$  contains an optimum solution for each subtree of T hanging at a child of r.

Case  $r \in \mathcal{O}$ : None of the children of r can be in  $\mathcal{O}$ .  $\mathcal{O} - \{r\}$  contains an optimum solution for each subtree of T hanging at a grandchild of r.

Subproblems? Subtrees of T rooted at nodes in T.

Natural candidate for  $v_n$  is root r of T? Let  $\mathcal{O}$  be an optimum solution to the whole problem.

Case  $r \not\in \mathcal{O}$ : Then  $\mathcal{O}$  contains an optimum solution for each subtree of T hanging at a child of r.

Case  $r \in \mathcal{O}$ : None of the children of r can be in  $\mathcal{O}$ .  $\mathcal{O} - \{r\}$  contains an optimum solution for each subtree of T hanging at a grandchild of r.

Subproblems? Subtrees of T rooted at nodes in T.

Natural candidate for  $v_n$  is root r of T? Let  $\mathcal{O}$  be an optimum solution to the whole problem.

Case  $r \not\in \mathcal{O}$ : Then  $\mathcal{O}$  contains an optimum solution for each subtree of T hanging at a child of r.

Case  $r \in \mathcal{O}$ : None of the children of r can be in  $\mathcal{O}$ .  $\mathcal{O} - \{r\}$  contains an optimum solution for each subtree of T hanging at a grandchild of r.

Subproblems? Subtrees of **T** rooted at nodes in **T**.

Natural candidate for  $v_n$  is root r of T? Let  $\mathcal{O}$  be an optimum solution to the whole problem.

Case  $r \not\in \mathcal{O}$ : Then  $\mathcal{O}$  contains an optimum solution for each subtree of T hanging at a child of r.

Case  $r \in \mathcal{O}$ : None of the children of r can be in  $\mathcal{O}$ .  $\mathcal{O} - \{r\}$  contains an optimum solution for each subtree of T hanging at a grandchild of r.

Subproblems? Subtrees of **T** rooted at nodes in **T**.

Natural candidate for  $v_n$  is root r of T? Let  $\mathcal{O}$  be an optimum solution to the whole problem.

Case  $r \not\in \mathcal{O}$ : Then  $\mathcal{O}$  contains an optimum solution for each subtree of T hanging at a child of r.

Case  $r \in \mathcal{O}$ : None of the children of r can be in  $\mathcal{O}$ .  $\mathcal{O} - \{r\}$  contains an optimum solution for each subtree of T hanging at a grandchild of r.

Subproblems? Subtrees of **T** rooted at nodes in **T**.

## Example



#### A Recursive Solution

T(u): subtree of T hanging at node u OPT(u): max weighted independent set value in T(u)

$$OPT(u) = \max \begin{cases} \sum_{v \text{ child of } u} OPT(v), \\ w(u) + \sum_{v \text{ grandchild of } u} OPT(v) \end{cases}$$

#### A Recursive Solution

T(u): subtree of T hanging at node u OPT(u): max weighted independent set value in T(u)

$$OPT(u) = \max \begin{cases} \sum_{v \text{ child of } u} OPT(v), \\ w(u) + \sum_{v \text{ grandchild of } u} OPT(v) \end{cases}$$

- Compute OPT(u) bottom up. To evaluate OPT(u) need to have computed values of all children and grandchildren of u
- What is an ordering of nodes of a tree T to achieve above? Post-order traversal of a tree.

- Compute OPT(u) bottom up. To evaluate OPT(u) need to have computed values of all children and grandchildren of u
- What is an ordering of nodes of a tree T to achieve above? Post-order traversal of a tree.

```
\begin{aligned} & \text{MIS-Tree}(T): \\ & \text{Let } v_1, v_2, \dots, v_n \text{ be a post-order traversal of nodes of T} \\ & \text{for } i = 1 \text{ to } n \text{ do} \\ & M[v_i] = \max \left( \begin{array}{c} \sum_{v_j \text{ child of } v_i} M[v_j], \\ w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j] \end{array} \right) \\ & \text{return } M[v_n] \text{ (* Note: } v_n \text{ is the root of } T \text{ *)} \end{aligned}
```

- Naive bound:  $O(n^2)$  since each  $M[v_i]$  evaluation may take O(n) time and there are n evaluations.
- ② Better bound: O(n). A value  $M[v_j]$  is accessed only by its parent and grand parent.

```
\begin{aligned} & \text{MIS-Tree}(\textit{\textbf{T}}): \\ & \text{Let } \textit{\textbf{v}}_1, \textit{\textbf{v}}_2, \dots, \textit{\textbf{v}}_n \text{ be a post-order traversal of nodes of T} \\ & \text{for } \textit{\textbf{i}} = 1 \text{ to } \textit{\textbf{n}} \text{ do} \\ & M[\textit{\textbf{v}}_i] = \max \left( \begin{array}{c} \sum_{\textit{\textbf{v}}_j \text{ child of } \textit{\textbf{v}}_i} M[\textit{\textbf{v}}_j], \\ w(\textit{\textbf{v}}_i) + \sum_{\textit{\textbf{v}}_j \text{ grandchild of } \textit{\textbf{v}}_i} M[\textit{\textbf{v}}_j] \end{array} \right) \\ & \text{\textbf{return }} M[\textit{\textbf{v}}_n] \text{ (* Note: } \textit{\textbf{v}}_n \text{ is the root of } \textit{\textbf{T}} \text{ *)} \end{aligned}
```

- Naive bound:  $O(n^2)$  since each  $M[v_i]$  evaluation may take O(n) time and there are n evaluations.
- ② Better bound: O(n). A value  $M[v_j]$  is accessed only by its parent and grand parent.

```
\begin{aligned} & \text{MIS-Tree}(\textit{\textbf{T}}): \\ & \text{Let } \textit{\textbf{v}}_1, \textit{\textbf{v}}_2, \dots, \textit{\textbf{v}}_n \text{ be a post-order traversal of nodes of T} \\ & \text{for } \textit{\textbf{i}} = 1 \text{ to } \textit{\textbf{n}} \text{ do} \\ & M[\textit{\textbf{v}}_i] = \max \left( \begin{array}{c} \sum_{\textit{\textbf{v}}_j \text{ child of } \textit{\textbf{v}}_i} M[\textit{\textbf{v}}_j], \\ w(\textit{\textbf{v}}_i) + \sum_{\textit{\textbf{v}}_j \text{ grandchild of } \textit{\textbf{v}}_i} M[\textit{\textbf{v}}_j] \end{array} \right) \\ & \text{\textbf{return }} M[\textit{\textbf{v}}_n] \text{ (* Note: } \textit{\textbf{v}}_n \text{ is the root of } \textit{\textbf{T}} \text{ *)} \end{aligned}
```

- Naive bound:  $O(n^2)$  since each  $M[v_i]$  evaluation may take O(n) time and there are n evaluations.
- ② Better bound: O(n). A value  $M[v_j]$  is accessed only by its parent and grand parent.

```
\begin{aligned} & \text{MIS-Tree}(T): \\ & \text{Let } v_1, v_2, \dots, v_n \text{ be a post-order traversal of nodes of T} \\ & \text{for } i = 1 \text{ to } n \text{ do} \\ & M[v_i] = \max \left( \begin{array}{c} \sum_{v_j \text{ child of } v_i} M[v_j], \\ w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j] \end{array} \right) \\ & \text{return } M[v_n] \text{ (* Note: } v_n \text{ is the root of } T \text{ *)} \end{aligned}
```

- Naive bound:  $O(n^2)$  since each  $M[v_i]$  evaluation may take O(n) time and there are n evaluations.
- ② Better bound: O(n). A value  $M[v_j]$  is accessed only by its parent and grand parent.

```
\begin{aligned} & \text{MIS-Tree}(T): \\ & \text{Let } v_1, v_2, \dots, v_n \text{ be a post-order traversal of nodes of T} \\ & \text{for } i = 1 \text{ to } n \text{ do} \\ & M[v_i] = \max \left( \begin{array}{c} \sum_{v_j \text{ child of } v_i} M[v_j], \\ w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j] \end{array} \right) \\ & \text{return } M[v_n] \text{ (* Note: } v_n \text{ is the root of } T \text{ *)} \end{aligned}
```

- Naive bound:  $O(n^2)$  since each  $M[v_i]$  evaluation may take O(n) time and there are n evaluations.
- **2** Better bound: O(n). A value  $M[v_j]$  is accessed only by its parent and grand parent.

## Example



## Part III

# Context free grammars: The CYK Algorithm

## **Parsing**

We saw regular languages and context free languages.

Most programming languages are specified via context-free grammars. Why?

- CFLs are sufficiently expressive to support what is needed.
- At the same time one can "efficiently" solve the parsing problem: given a string/program **w**, is it a valid program according to the CFG specification of the programming language?

## CFG specification for C

```
<relational-expression> ::= <shift-expression>
                            <relational-expression> < <shift-expression>
                            <relational-expression> > <shift-expression>
                            <relational-expression> <= <shift-expression>
                            <relational-expression> >= <shift-expression>
<shift-expression> ::= <additive-expression>
                       <shift-expression> << <additive-expression>
                       <shift-expression> >> <additive-expression>
<additive-expression> ::= <multiplicative-expression>
                          <additive-expression> + <multiplicative-expression>
                          <additive-expression> - <multiplicative-expression>
<multiplicative-expression> ::= <cast-expression>
                                <multiplicative-expression> * <cast-expression>
                                <multiplicative-expression> / <cast-expression>
                                <multiplicative-expression> % <cast-expression>
<cast-expression> ::= <unary-expression>
                      ( <type-name> ) <cast-expression>
<unary-expression> ::= <postfix-expression>
                       ++ <unary-expression>
                       -- <unary-expression>
                       <unary-operator> <cast-expression>
                       sizeof <unary-expression>
                       sizeof <type-name>
```

## Algorithmic Problem

```
Given a CFG G = (V, T, P, S) and a string w \in T^*, is w \in L(G)?
```

- That is, does **S** derive **w**?
- Equivalently, is there a parse tree for w?

#### **Simplifying assumption:** $oldsymbol{G}$ is in Chomsky Normal Form (CNF)

- Productions are all of the form  $A \to BC$  or  $A \to a$ . If  $\epsilon \in L$  then  $S \to \epsilon$  is also allowed. (This is the only place in the grammar that has an  $\epsilon$ .)
- ullet Every CFG  $oldsymbol{G}$  can be converted into CNF form via an efficient algorithm
- Advantage: parse tree of constant degree.

## Algorithmic Problem

```
Given a CFG G = (V, T, P, S) and a string w \in T^*, is w \in L(G)?
```

- That is, does **S** derive **w**?
- Equivalently, is there a parse tree for w?

#### **Simplifying assumption:** G is in Chomsky Normal Form (CNF)

- Productions are all of the form  $A \to BC$  or  $A \to a$ . If  $\epsilon \in L$  then  $S \to \epsilon$  is also allowed. (This is the only place in the grammar that has an  $\epsilon$ .)
- Every CFG G can be converted into CNF form via an efficient algorithm
- Advantage: parse tree of constant degree.

## CYK Algorithm

 ${\sf CYK}\ {\sf Algorithm} = {\sf Cocke-Younger-Kasami}\ {\sf algorithm}$ 

## Example

$$egin{aligned} S &
ightarrow \epsilon \mid AB \mid XB \ Y &
ightarrow AB \mid XB \ X &
ightarrow AY \ A &
ightarrow 0 \ B &
ightarrow 1 \end{aligned}$$

#### Question:

- Is **000111** in **L(G)**?
- Is **00011** in **L(G)**?

## Towards Recursive Algorithm

Assume  $\boldsymbol{G}$  is a CNF grammar.

 $\boldsymbol{S}$  derives  $\boldsymbol{w}$  iff one of the following holds:

- |w| = 1 and  $S \rightarrow w$  is a rule in P
- |w| > 1 and there is a rule  $S \to AB$  and a split w = uv with  $|u|, |v| \ge 1$  such that A derives u and B derives v

**Observation:** Subproblems generated require us to know if some non-terminal  $\boldsymbol{A}$  will derive a substring of  $\boldsymbol{w}$ .

## Towards Recursive Algorithm

Assume  $\boldsymbol{G}$  is a CNF grammar.

 ${\it S}$  derives  ${\it w}$  iff one of the following holds:

- |w| = 1 and  $S \rightarrow w$  is a rule in P
- |w| > 1 and there is a rule  $S \to AB$  and a split w = uv with  $|u|, |v| \ge 1$  such that A derives u and B derives v

**Observation:** Subproblems generated require us to know if some non-terminal  $\boldsymbol{A}$  will derive a substring of  $\boldsymbol{w}$ .

### Recursive solution

- ② Assume r non-terminals in  $G: R_1, \ldots, R_r$ .
- 3 R<sub>1</sub>: Start symbol.
- $f(\ell, s, b)$ : TRUE  $\iff w_s w_{s+1} \dots, w_{s+\ell-1} \in L(R_b)$ . = Substring w starting at pos  $\ell$  of length s is deriveable by  $R_b$ .
- **⑤** Recursive formula: f(1, s, a) is 1 iff  $(R_a \rightarrow w_s) \in G$ .
- **6** For  $\ell > 1$ :

$$f(\ell, s, a) = \bigvee_{p=1}^{\ell-1} \bigvee_{(R_a o R_b R_c) \in G} \Big( f(p, s, b) \wedge f(\ell - p, s + p, c) \Big)$$

Output:  $w \in L(G) \iff f(n, 1, 1) = 1$ .

#### Recursive solution

- ② Assume r non-terminals in  $G: R_1, \ldots, R_r$ .
- $f(\ell, s, b)$ : TRUE  $\iff w_s w_{s+1} \dots, w_{s+\ell-1} \in L(R_b)$ . = Substring w starting at pos  $\ell$  of length s is deriveable by  $R_b$ .
- **3** Recursive formula: f(1, s, a) is 1 iff  $(R_a \rightarrow w_s) \in G$ .
- **6** For  $\ell > 1$ :

$$f(\ell, s, a) = \bigvee_{p=1}^{\ell-1} \bigvee_{(R_a \to R_b R_c) \in G} (f(p, s, b) \land f(\ell - p, s + p, c))$$

Output:  $w \in L(G) \iff f(n,1,1) = 1$ .

## **Analysis**

Assume  $G = \{R_1, R_2, \dots, R_r\}$  with start symbol  $R_1$ 

- Number of subproblems:  $O(rn^2)$
- Space:  $O(rn^2)$
- Time to evaluate a subproblem from previous ones: O(|P|n) where P is set of rules
- Total time:  $O(|P|rn^3)$  which is polynomial in both |w| and |G|. For fixed G the run time is cubic in input string length.
- Running time can be improved to  $O(n^3|P|)$ .
- Not practical for most programming languages. Most languages assume restricted forms of CFGs that enable more efficient parsing algorithms.

```
Input string: X = x_1 \dots x_n.
Input grammar G: r nonterminal symbols R_1...R_r, R_1 start symbol.
P[n][n][r]: Array of booleans. Initialize all to FALSE
for s = 1 to n do
    for each unit production R_v \to x_s do
         P[1][s][v] \leftarrow \mathsf{TRUE}
for \ell = 2 to n do // Length of span
    for s = 1 to n - \ell + 1 do // Start of span
         for p = 1 to \ell - 1 do // Partition of span
             for all (R_a \rightarrow R_b R_c) \in G do
                  if P[p][s][b] and P[I-p][s+p][c] then
                       P[I][s][a] \leftarrow \mathsf{TRUE}
if P[n][1][1] is TRUE then
    return ``X is member of language''
else
    return ``X is not member of language''
```

## Example

$$egin{aligned} S &
ightarrow \epsilon \mid AB \mid XB \ Y &
ightarrow AB \mid XB \ X &
ightarrow AY \ A &
ightarrow 0 \ B &
ightarrow 1 \end{aligned}$$

#### Question:

- Is **000111** in **L(G)**?
- Is **00011** in **L(G)**?

**Order of evaluation for iterative algorithm:** increasing order of substring length.

## Example

$$egin{aligned} S &
ightarrow \epsilon \mid AB \mid XB \ Y &
ightarrow AB \mid XB \ X &
ightarrow AY \ A &
ightarrow 0 \ B &
ightarrow 1 \end{aligned}$$

## Takeaway Points

- Oynamic programming is based on finding a recursive way to solve the problem. Need a recursion that generates a small number of subproblems.
- ② Given a recursive algorithm there is a natural DAG associated with the subproblems that are generated for given instance; this is the dependency graph. An iterative algorithm simply evaluates the subproblems in some topological sort of this DAG.
- The space required to evaluate the answer can be reduced in some cases by a careful examination of that dependency DAG of the subproblems and keeping only a subset of the DAG at any time.