Algorithms & Models of Computation
CS/ECE 374, Fall 2017

Even More on Dynamic
Programming

Lecture 15
Thursday, October 19, 2017

Fall 2017 / 26

Sariel Har-Peled (UIUC)

Part |

Longest Common Subsequence

Problem

Sariel Har-Peled (UIUC) Fall 2017

The LCS Problem

Definition
LCS between two strings X and Y is the length of longest common
subsequence between X and Y.

Example
LCS between ABAZDC and BACBAD is

Sariel Har-Peled (UIUC) CS374 8 Fall 2017 3 /26

The LCS Problem

Definition
LCS between two strings X and Y is the length of longest common
subsequence between X and Y.

LCS between ABAZDC and BACBAD is4 via ABAD \

Sariel Har-Peled (UIUC) CS374 8 Fall 2017 3/26

The LCS Problem

Definition
LCS between two strings X and Y is the length of longest common
subsequence between X and Y.

LCS between ABAZDC and BACBAD is4 via ABAD \

Derive a dynamic programming algorithm for the problem.

Sariel Har-Peled (UIUC) CS374 8 Fall 2017 3/26

Part 1l

Maximum Weighted Independent Set

in Trees

Sariel Har-Peled (UIUC) Fall 2017

Maximum Weight Independent Set Problem

Input Graph G = (V, E) and weights w(v) > 0 for each
vev

Goal Find maximum weight independent set in G

5
(®)

Sariel Har-Peled (UIUC) CS374 5 Fall 2017 5/ 26

Maximum Weight Independent Set Problem

Input Graph G = (V, E) and weights w(v) > 0 for each
vev

Goal Find maximum weight independent set in G

Maximum weight independent set in above graph: {B, D}

Sariel Har-Peled (UIUC) CS374 5 Fall 2017 5/ 26

Maximum Weight Independent Set in a Tree

Input Tree T = (V, E) and weights w(v) > 0 for each
veV

Goal Find maximum weight independent set in T

Maximum weight independent set in above tree: 77

Sariel Har-Peled (UIUC) CS374 6 Fall 2017 6 /26

Towards a Recursive Solution

For an arbitrary graph G:
@ Number vertices as vi, Vo, ..., V,

@ Find recursively optimum solutions without v,, (recurse on
G — v,,) and with v, (recurse on G — v,, — N(v,) & include
Vn).

© Saw that if graph G is arbitrary there was no good ordering that
resulted in a small number of subproblems.

Sariel Har-Peled (UIUC) CS374 7 Fall 2017 7 /26

Towards a Recursive Solution

For an arbitrary graph G:
@ Number vertices as vi, Vo, ..., V,

@ Find recursively optimum solutions without v,, (recurse on
G — v,,) and with v, (recurse on G — v,, — N(v,) & include
Vn).

© Saw that if graph G is arbitrary there was no good ordering that
resulted in a small number of subproblems.

What about a tree?

Sariel Har-Peled (UIUC) CS374 7 Fall 2017 7 /26

Towards a Recursive Solution

For an arbitrary graph G:
@ Number vertices as vi, Vo, ..., V,

@ Find recursively optimum solutions without v,, (recurse on
G — v,,) and with v, (recurse on G — v,, — N(v,) & include
Vn).

© Saw that if graph G is arbitrary there was no good ordering that
resulted in a small number of subproblems.

What about a tree? Natural candidate for v, is root r of T?

Sariel Har-Peled (UIUC) CS374 7 Fall 2017 7 /26

Towards a Recursive Solution

Natural candidate for v, is root r of T? Let O be an optimum
solution to the whole problem.

Case r € O : Then O contains an optimum solution for each
subtree of T hanging at a child of r.

Sariel Har-Peled (UIUC) Fall 2017

Towards a Recursive Solution

Natural candidate for v, is root r of T? Let O be an optimum
solution to the whole problem.

Case r € O : Then O contains an optimum solution for each
subtree of T hanging at a child of r.

Case r € O : None of the children of r can be in O. O — {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r.

Sariel Har-Peled (UIUC) CS374 8 Fall 2017 8 /26

Towards a Recursive Solution

Natural candidate for v, is root r of T? Let O be an optimum
solution to the whole problem.

Case r € O : Then O contains an optimum solution for each
subtree of T hanging at a child of r.

Case r € O : None of the children of r can be in O. O — {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r.

Subproblems? Subtrees of T rooted at nodes in T.

Sariel Har-Peled (UIUC) CS374 8 Fall 2017 8 /26

Towards a Recursive Solution

Natural candidate for v, is root r of T? Let O be an optimum
solution to the whole problem.

Case r € O : Then O contains an optimum solution for each
subtree of T hanging at a child of r.

Case r € O : None of the children of r can be in O. O — {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r.

Subproblems? Subtrees of T rooted at nodes in T.

How many of them?

Sariel Har-Peled (UIUC) CS374 8 Fall 2017 8 /26

Towards a Recursive Solution

Natural candidate for v, is root r of T? Let O be an optimum
solution to the whole problem.

Case r € O : Then O contains an optimum solution for each
subtree of T hanging at a child of r.

Case r € O : None of the children of r can be in O. O — {r}
contains an optimum solution for each subtree of T
hanging at a grandchild of r.

Subproblems? Subtrees of T rooted at nodes in T.

How many of them? O(n)

Sariel Har-Peled (UIUC) CS374 8 Fall 2017 8 /26

Sariel Har-Peled (UIUC) Fall 2017 9/ 26

A Recursive Solution

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT (u) =

Sariel Har-Peled (UIUC) CS374 10 Fall 2017 10 / 26

A Recursive Solution

T (u): subtree of T hanging at node u
OPT (u): max weighted independent set value in T (u)

OPT(u) = max 2 child of » OPT (V)
W(U) + Zv grandchild of u OPT(V)

Sariel Har-Peled (UIUC) CS374 10 Fall 2017 10 / 26

lterative Algorithm

© Compute OPT (u) bottom up. To evaluate OPT (u) need to
have computed values of all children and grandchildren of u

© What is an ordering of nodes of a tree T to achieve above?

Sariel Har-Peled (UIUC) CS374 11 Fall 2017 11 /26

lterative Algorithm

© Compute OPT (u) bottom up. To evaluate OPT (u) need to
have computed values of all children and grandchildren of u

© What is an ordering of nodes of a tree T to achieve above?
Post-order traversal of a tree.

Sariel Har-Peled (UIUC) CS374 11 Fall 2017 11 /26

lterative Algorithm

MIS-Tree(T):
Let vi,v2,...,Vv, be a post-order traversal of nodes of T

for i=1 to n do
Zvj ehitd ot v MIVils)

W(Vi) + Zvj grandchild of v; M[Vj]
return M[v,] (*x Note: v, is the root of T *)

M|v;] = max

Sariel Har-Peled (UIUC) CS374 12 Fall 2017 12 /26

lterative Algorithm

MIS-Tree(T):
Let vi,v2,...,Vv, be a post-order traversal of nodes of T

for i=1 to n do
Zvj ehitd ot v MIVils)

W(Vi) + Zvj grandchild of v; M[Vj]
return M[v,] (*x Note: v, is the root of T *)

M|v;] = max

Space:

Sariel Har-Peled (UIUC) CS374 12 Fall 2017 12 /26

lterative Algorithm

MIS-Tree(T):
Let vi,v2,...,Vv, be a post-order traversal of nodes of T

for i=1 to n do
Zvj ehitd ot v MIVils)

M|v;] = max
l W(Vi) + Zvj grandchild of v; M[Vj]
return M[v,] (*x Note: v, is the root of T *)

Space: O(n) to store the value at each node of T
Running time:

Sariel Har-Peled (UIUC) CS374 12 Fall 2017 12 /26

lterative Algorithm

MIS-Tree(T):
Let vi,v2,...,Vv, be a post-order traversal of nodes of T

for i=1 to n do
Zvj ehitd ot v MIVils)

W(Vi) + Zvj grandchild of v; M[Vj]
return M[v,] (*x Note: v, is the root of T *)

M|v;] = max

Space: O(n) to store the value at each node of T
Running time:

@ Naive bound: O(n?) since each M[v;] evaluation may take
O(n) time and there are n evaluations.

Sariel Har-Peled (UIUC) CS374 12 Fall 2017 12 /26

lterative Algorithm

MIS-Tree(T):
Let vi,v2,...,Vv, be a post-order traversal of nodes of T

for i=1 to n do
Zvj ehitd ot v MIVils)

W(Vi) + Zvj grandchild of v; M[Vj]
return M[v,] (*x Note: v, is the root of T *)

M|v;] = max

Space: O(n) to store the value at each node of T
Running time:

@ Naive bound: O(n?) since each M[v;] evaluation may take
O(n) time and there are n evaluations.

@ Better bound: O(n). A value M[v;] is accessed only by its
parent and grand parent.

Sariel Har-Peled (UIUC) CS374 12 Fall 2017 12 /26

Sariel Har-Peled (UIUC) Fall 2017 13 /26

Part |11

Context free grammars: The CYK

Algorithm

Sariel Har-Peled (UIUC) Fall 2017

We saw regular languages and context free languages.

Most programming languages are specified via context-free
grammars. Why?

o CFLs are sufficiently expressive to support what is needed.

@ At the same time one can “efficiently” solve the parsing problem:

given a string/program w;, is it a valid program according to the
CFG specification of the programming language?

Sariel Har-Peled (UIUC) CS374 15

Fall 2017 15 / 26

CFG specification for C

<relational-expression> ::= <shift-expression>

| <relational-expression> < <shift-expression>

| <relational-expression> > <shift-expression>

| <relational-expression> <= <shift-expression>
|

<relational-expression> >= <shift-expression>

= <additive-expression>
| <shift-expression> << <additive-expression>
| <shift-expression> >> <additive-expression>

<shift-expression> ::

= <multiplicative-expression>
| <additive-expression> + <multiplicative-expression>
| <additive-expression> - <multiplicative-expression>

<additive-expression> ::

= <cast-expression>

| <multiplicative-expression> * <cast-expression>
| <multiplicative-expression> / <cast-expression>
| <multiplicative-expression> % <cast-expression>

<multiplicative-expression> ::

<cast-expression> ::= <unary-expression>
| (<type-name>) <cast-expression>

<unary-expression> ::= <postfix-expression>
| 44 <unary-expression>

| == <unary-expression>

| <unary-operator> <cast-expression>
| sizeof <unary-expression>

| sizeof <type-name>

Peled (UIUC) CS374 16

Algorithmic Problem

Given a CFG G = (V,T,P,S) and astringw € T*, is
w € L(G)?

@ That is, does S derive w?
e Equivalently, is there a parse tree for w?

Sariel Har-Peled (UIUC) CS374 17 Fall 2017 17 / 26

Algorithmic Problem

Given a CFG G = (V,T,P,S) and astringw € T*, is
w € L(G)?

@ That is, does S derive w?

e Equivalently, is there a parse tree for w?

Simplifying assumption: G is in Chomsky Normal Form (CNF)

@ Productions are all of the form A — BC or A — a.
If € € L then § — € is also allowed.
(This is the only place in the grammar that has an ¢.)

@ Every CFG G can be converted into CNF form via an efficient
algorithm
@ Advantage: parse tree of constant degree.

Sariel Har-Peled (UIUC) CS374 17 Fall 2017 17 / 26

CYK Algorithm

CYK Algorithm = Cocke-Younger-Kasami algorithm

Sariel Har-Peled (UIUC) CS374 18 Fall 2017 18 / 26

S—>¢€¢|AB | XB
Y - AB | XB
X — AY
A—0

B—1

Question:
e Is 000111 in L(G)?
e Is 00011 in L(G)?

Sariel Har-Peled (UIUC) CS374 19 Fall 2017 19 / 26

Towards Recursive Algorithm

Assume G is a CNF grammar.
S derives w iff one of the following holds:

o |lw=1and S > wisarulein P

@ |w| > 1 and there is a rule S — AB and a split w = uv with
|u|, |[v| > 1 such that A derives u and B derives v

Sariel Har-Peled (UIUC) CS374 20 Fall 2017 20 / 26

Towards Recursive Algorithm

Assume G is a CNF grammar.
S derives w iff one of the following holds:

o |lw=1and S > wisarulein P

@ |w| > 1 and there is a rule S — AB and a split w = uv with
|u|, |[v| > 1 such that A derives u and B derives v

Observation: Subproblems generated require us to know if some
non-terminal A will derive a substring of w.

Sariel Har-Peled (UIUC) CS374 20 Fall 2017 20 / 26

Recursive solution

Q Input: w = wiws...w,
@ Assume r non-terminals in G: Ry, ..., R,.
© Ry: Start symbol.
Q f(¢,s,b): TRUE <= wswey1...,Wspp_1 € L(Rp).
= Substring w starting at pos £ of length s is deriveable by R,,.

Sariel Har-Peled (UIUC) CS374 21 Fall 2017 21/ 26

Recursive solution

Q Input: w = wiws...w,
@ Assume r non-terminals in G: Ry, ..., R,.
© Ry: Start symbol.
Q f(¢,s,b): TRUE <= wswey1...,Wspp_1 € L(Rp).
= Substring w starting at pos £ of length s is deriveable by R.
@ Recursive formula: f(1,s,a) is 1 ifF(Ra — ws> €G.
Q Fort > 1:

-1

fe.s,ay=\) (fp.s,b) AF(E—p,s+p,c))

p=1 (Ra—>RbRc)EG

@ Output: w € L(G) <— f(n,1,1) = 1.

Sariel Har-Peled (UIUC) CS374 21 Fall 2017 21/ 26

Assume G = {R1, Ry, ..., R, } with start symbol R;

Number of subproblems: O(rn?)

Space: O(rn?)

Time to evaluate a subproblem from previous ones: O(|P|n)
where P is set of rules

Total time: O(|P|rn®) which is polynomial in both |w| and

|G|. For fixed G the run time is cubic in input string length.

Running time can be improved to O(n?|P|).

Not practical for most programming languages. Most languages
assume restricted forms of CF'Gs that enable more efficient
parsing algorithms.

Sariel Har-Peled (UIUC) CS374 22 Fall 2017 22 /26

CYK Algorithm

Input string: X = x1...X,.
Input grammar G: r nonterminal symbols R;...R,, R; start symbol.

P[n][n][r]: Array of booleans. Initialize all to FALSE
for s=1 to n do
for each unit production R, — x; do
P[1][s][v] + TRUE
for £=2 to n do // Length of span
for s=1ton—£+1do // Start of span
for p=1to £—1do // Partition of span
for a1l (R, — RyR.) € G do
if P[p][s][b] and P[I — p][s + p][c] then
P[/][s][a] + TRUE
if P[n][1][1] is TRUE then
return ~~ X is member of language''
else
return ~° X is not member of language'!'

Sariel Har-Peled (UIUC) CS374 23 Fall 2017 23 /26

S—>¢€¢|AB | XB
Y - AB | XB
X — AY
A—0

B—1

Question:
e Is 000111 in L(G)?
e Is 00011 in L(G)?

Order of evaluation for iterative algorithm: increasing order of
substring length.

Sariel Har-Peled (UIUC) CS374 24 Fall 2017 24 / 26

S—e|AB| XB

Y — AB | XB
X — AY
A—0
B—1
Sariel Har-Peled (UIUC) CS374 25

Fall 2017 25/ 26

Takeaway Points

© Dynamic programming is based on finding a recursive way to
solve the problem. Need a recursion that generates a small
number of subproblems.

@ Given a recursive algorithm there is a natural DAG associated
with the subproblems that are generated for given instance; this
is the dependency graph. An iterative algorithm simply evaluates
the subproblems in some topological sort of this DAG.

© The space required to evaluate the answer can be reduced in
some cases by a careful examination of that dependency DAG
of the subproblems and keeping only a subset of the DAG at
any time.

Sariel Har-Peled (UIUC) CS374 26 Fall 2017 26 / 26

	Longest Common Subsequence Problem
	Maximum Weighted Independent Set in Trees
	Context free grammars: The CYK Algorithm

