Algorithms & Models of Computation
CS/ECE 374, Fall 2017

Undecidability Il: More
problems via reductions

lecture 21
Thursday, November 16, 2017

Fall 2017 1/5

Sariel Har-Peled (UIUC)



Turing machines...

TM = Turing machine = program.

Sariel Har-Peled (UIUC) CS374 2 Fall 2017 2/5



Reminder: Undecidability

Definition 1

Language L C X* is undecidable if no program P, given w € X* as
input, can always stop and output whether w € L or w & L.

(Usually defined using T'M not programs. But equivalent.

Sariel Har-Peled (UIUC) CS374 3 Fall 2017 3/5



Reminder: Undecidability

Definition 1

Language L C X* is undecidable if no program P, given w € X* as

input, can alwayS StOp and output whether w € L or
w ¢ L

(Usually defined using TM not programs. But equivalent.

Sariel Har-Peled (UIUC) CS374 3 Fall 2017 3/5



Reminder: Undecidability

Definition 1
Language L C X* is undecidable if no program P, given w € X* as

...always stop..

output whether w € L or w ¢ L.

(Usually defined using TM not programs. But equivalent.

Sariel Har-Peled (UIUC) CS374 3 Fall 2017 3/5



Reminder: The following language is undecidable

Decide if given a program M, and an input w, does M accepts w.
Formally, the corresponding language is

Ay = {(M, w) ’ M is a TM and M accepts W} .

Sariel Har-Peled (UIUC) CS374 4 Fall 2017 4/5



Reminder: The following language is undecidable

Decide if given a program M, and an input w, does M accepts w.
Formally, the corresponding language is

Ay = {(M, w) ’ M is a TM and M accepts W} .

Definition 2

A decider for a language L, is a program (or a TM) that always
stops, and outputs for any input string w € X* whether or not
w € L.

A language that has a decider is decidable.

Sariel Har-Peled (UIUC) CS374 4 Fall 2017 4/5



Reminder: The following language is undecidable

Decide if given a program M, and an input w, does M accepts w.
Formally, the corresponding language is

Ay = {(M, w) ’ M is a TM and M accepts W} .

Definition 2

A decider for a language L, is a program (or a TM) that always
stops, and outputs for any input string w € X* whether or not
w € L.

A language that has a decider is decidable.
Turing proved the following:

A\ Iis undecidable. \

Sariel Har-Peled (UIUC) CS374 4 Fall 2017 4/5




Part |

Sariel Har-Peled (UIUC) Fall 2017 5/5



Meta definition: Problem A reduces to problem B, if given a
solution to B, then it implies a solution for A. Namely, we can solve
B then we can solve A. We will done this by A = B.

Sariel Har-Peled (UIUC) CS374 6 Fall 2017 6/5



Meta definition: Problem A reduces to problem B, if given a
solution to B, then it implies a solution for A. Namely, we can solve
B then we can solve A. We will done this by A = B.

Definition 4

oracle ORAC for language L is a function that receives as a word
w, returns TRUE <— w € L.

Sariel Har-Peled (UIUC) CS374 6 Fall 2017 6/5



Meta definition: Problem A reduces to problem B, if given a
solution to B, then it implies a solution for A. Namely, we can solve
B then we can solve A. We will done this by A = B.

oracle ORAC for language L is a function that receives as a word
w, returns TRUE <— w € L.

v

A language X reduces to a language Y, if one can construct a TM
decider for X using a given oracle ORACy for Y.
We will denote this fact by X — Y.

Sariel Har-Peled (UIUC) CS374 6 Fall 2017 6/5



Reduction proof technique

@ B: Problem/language for which we want to prove undecidable.

Sariel Har-Peled (UIUC) CS374 7 Fall 2017 7/5



Reduction proof technique

@ B: Problem/language for which we want to prove undecidable.

@ Proof via reduction. Result in a proof by contradiction.

Sariel Har-Peled (UIUC) CS374 7 Fall 2017 7/5



Reduction proof technique

@ B: Problem/language for which we want to prove undecidable.
@ Proof via reduction. Result in a proof by contradiction.
© L: language of B.

Sariel Har-Peled (UIUC) CS374 7 Fall 2017 7/5



Reduction proof technique

@ B: Problem/language for which we want to prove undecidable.
@ Proof via reduction. Result in a proof by contradiction.

© L: language of B.

© Assume L is decided by TM M.

Sariel Har-Peled (UIUC) CS374 7 Fall 2017 7/5



Reduction proof technique

@ B: Problem/language for which we want to prove undecidable.
@ Proof via reduction. Result in a proof by contradiction.

© L: language of B.

© Assume L is decided by TM M.

© Create a decider for known undecidable problem A using M.

Sariel Har-Peled (UIUC) CS374 7 Fall 2017 7/5



Reduction proof technique

@ B: Problem/language for which we want to prove undecidable.
@ Proof via reduction. Result in a proof by contradiction.

© L: language of B.

© Assume L is decided by TM M.

© Create a decider for known undecidable problem A using M.
@ Result in decider for A (i.e., Atyp).

Sariel Har-Peled (UIUC) CS374 7 Fall 2017 7/5



Reduction proof technique

@ B: Problem/language for which we want to prove undecidable.
@ Proof via reduction. Result in a proof by contradiction.

© L: language of B.

© Assume L is decided by TM M.

© Create a decider for known undecidable problem A using M.
@ Result in decider for A (i.e., Atyp).

@ Contradiction A is not decidable.

Sariel Har-Peled (UIUC) CS374 7 Fall 2017 7/5



Reduction proof technique

@ B: Problem/language for which we want to prove undecidable.
@ Proof via reduction. Result in a proof by contradiction.

© L: language of B.

© Assume L is decided by TM M.

© Create a decider for known undecidable problem A using M.
@ Result in decider for A (i.e., Atyp).

@ Contradiction A is not decidable.

@ Thus, L must be not decidable.

Sariel Har-Peled (UIUC) CS374 7 Fall 2017 7/5



Reduction implies decidability

Let X and Y be two languages, and assume that X —> Y. If Y
is decidable then X is decidable.

Proof.

Let T be a decider for Y (i.e., a program or a TM). Since X reduces
to Y, it follows that there is a procedure Tx|y (i.e., decider) for X
that uses an oracle for Y as a subroutine. We replace the calls to
this oracle in Tx|y by calls to T. The resulting program Tx is a
decider and its language is X. Thus X is decidable (or more formally
TM decidable). O

o’

Sariel Har-Peled (UIUC) CS374 8 Fall 2017 8/5



The countrapositive...

Let X and Y be two languages, and assume that X —> Y. If X
is undecidable then Y is undecidable.

Sariel Har-Peled (UIUC) CS374 9 Fall 2017 9/5



Part 1l

Halting

Sariel Har-Peled (UIUC) Fall 2017



The halting problem

Language of all pairs (M, w) such that M halts on w:

Aol = {(M, w) ‘ M is a TM and M stops on w} .

Sariel Har-Peled (UIUC) CS374 11 Fall 2017 1/5



The halting problem

Language of all pairs (M, w) such that M halts on w:

Aol = {(M, w) ‘ M is a TM and M stops on w} .

Similar to language already known to be undecidable:

Ay = {(M, w) ‘ M is a TM and M accepts w} .

Sariel Har-Peled (UIUC) CS374 11 Fall 2017 11/5



On way to proving that Halting is undecidable...

Lemma 8

The language A\ reduces to Agai,. Namely, given an oracle for
Agare one can build a decider (that uses this oracle) for Ary;.

Sariel Har-Peled (UIUC) CS374 12 Fall 2017 12 /5



On way to proving that Halting is undecidable...

Proof of lemma

Let ORAC,;: be the given oracle for Aga;;. We build the following
decider for Ary.

Decider-ATM((M, w>)

res < ORACHa/t<(M, W))

// if M does not halt on w then reject.
if res = reject then
halt and reject.
// M halts on w since res =accept.
// Simulating M on w terminates in finite time.
res, <Simulate M on w.
return res;.

This procedure always return and as such its a decider for Ay, [l

Sariel Har-Peled (UIUC) CS374 13 Fall 2017 13/5



The Halting problem is not decidable

Theorem 9
The language Agays is not decidable.

Proof.

Assume, for the sake of contradiction, that Agagt is decidable. As
such, there is a TM, denoted by T' Mg, that is a decider for
Agnaie. We can use TMyay; as an implementation of an oracle for
Agai, Which would imply by Lemma ?? that one can build a decider
for Aryn. However, Aty is undecidable. A contradiction. It must be
that Agai is undecidable. ]

v

Sariel Har-Peled (UIUC) CS374 14 Fall 2017 14 /5



The same proof by figure...

Turing machine for Aty

(M, w) (M, w)

TMHalt

accept | accept
accept | Simulate M >
on w >

reject | reject
reject reject o

. if Agaye is decidable, then Ay is decidable, which is impossible.

Sariel Har-Peled (UIUC) CS374

15

Fall 2017 15 /5



Part |11

Emptiness

Sariel Har-Peled (UIUC) Fall 2017



The language of empty languages

Q@ Ery = {(M) ) M is a TM and L(M) = (z)}.

© TMernm: Assume we are given this decider for Eqty.

© Need to use TMEgrp to build a decider for Ary.

© Decider for Aty is given M and w and must decide whether M
accepts w.

© Restructure question to be about Turing machine having an
empty language.

@ Somehow make the second input (w) disappear.

Sariel Har-Peled (UIUC) CS374 17 Fall 2017 17 /5



The language of empty languages

Q@ Ery = {(M) ) M is a TM and L(M) = (z)}.
© TMernm: Assume we are given this decider for Eqty.
© Need to use TMEgrp to build a decider for Ary.
© Decider for Aty is given M and w and must decide whether M
accepts w.
© Restructure question to be about Turing machine having an
empty language.
@ Somehow make the second input (w) disappear.
@ Idea: hard-code w into M, creating a TM M,, which runs M
on the fixed string w.
Q@ TM M,,:
® Input = x (which will be ignored)
@ Simulate M on w.
@ If the simulation accepts, accept. If the simulation rejects,
reject.

Sariel Har-Peled (UIUC) CS374 17 Fall 2017 17 /5



Embedding strings...

@ Given program (M) and input w...
@ ...can output a program (M,,).

© The program M, simulates M on w. And accepts/rejects
accordingly.

© EmbedString((M, w)) input two strings (M) and w, and
output a string encoding (TM) (M,,).

Sariel Har-Peled (UIUC) CS374 18 Fall 2017 18/5



Embedding strings...

@ Given program (M) and input w...
@ ...can output a program (M,,).

© The program M, simulates M on w. And accepts/rejects
accordingly.

© EmbedString((M, w)) input two strings (M) and w, and
output a string encoding (TM) (M,,).

@ What is L(M,,)?

Sariel Har-Peled (UIUC) CS374 18 Fall 2017 18/5



Embedding strings...

@ Given program (M) and input w...

@ ...can output a program (M,,).

© The program M, simulates M on w. And accepts/rejects
accordingly.

© EmbedString((M, w)) input two strings (M) and w, and
output a string encoding (TM) (M,,).

@ What is L(M,,)?

@ Since M,, ignores input x.. language M,, is either X* or (.
It is X* if M accepts w, and it is @ if M does not accept w.

Sariel Har-Peled (UIUC) CS374 18 Fall 2017 18/5



Emptiness is undecidable

Theorem 10
The language Er\; is undecidable.

© Assume (for contradiction), that Er); is decidable.
@ TMegrm be its decider.
© Build decider AnotherDecider-A 1y for Ary:

AnotherDecider-Atm({(M, w))
(M,,) - EmbedString ((M, w))
r < TMETM(<MW>)
if r = accept then
return reject
// TMgrm({M,,)) rejected its input
return accept

Sariel Har-Peled (UIUC) CS374 19 Fall 2017 19/5



Emptiness is undecidable...

Proof continued

Consider the possible behavior of AnotherDecider-Aty on the
input (M, w).

o If TMgrym accepts (M, ), then L(M,,) is empty. This implies
that M does not accept w. As such, AnotherDecider-A 1y
rejects its input (M, w).

o If TMgrym accepts (M, ), then L(M,,) is not empty. This

implies that M accepts w. So AnotherDecider-A -ty accepts
(M, w).

Sariel Har-Peled (UIUC) CS374 20 Fall 2017 20/5



Emptiness is undecidable...

Proof continued

Consider the possible behavior of AnotherDecider-Aty on the
input (M, w).

o If TMgrym accepts (M, ), then L(M,,) is empty. This implies
that M does not accept w. As such, AnotherDecider-A 1y
rejects its input (M, w).

o If TMgrym accepts (M, ), then L(M,,) is not empty. This
implies that M accepts w. So AnotherDecider-A -ty accepts
(M, w).

— AnotherDecider-A1y is decider for Ary;.
But Aty is undecidable...

Sariel Har-Peled (UIUC) CS374 20 Fall 2017 20/5



Emptiness is undecidable...

Proof continued

Consider the possible behavior of AnotherDecider-Aty on the
input (M, w).

o If TMgrym accepts (M, ), then L(M,,) is empty. This implies
that M does not accept w. As such, AnotherDecider-A 1y
rejects its input (M, w).

o If TMgrym accepts (M, ), then L(M,,) is not empty. This
implies that M accepts w. So AnotherDecider-A -ty accepts
(M, w).

— AnotherDecider-A1y is decider for Ary;.
But Aty is undecidable...
...must be assumption that Er); is decidable is false. [

Sariel Har-Peled (UIUC) CS374 20 Fall 2017 20/5



Emptiness is undecidable via diagram

AnotherDecider-A1\

accept accept

M, w M, "
(M. w) EmbedString<—>> TMETM <

reject Teject”

AnotherDecider- Ay never actually runs the code for M,,. It
hands the code to a function TMEgrp which analyzes what the code

would do if run it. So it does not matter that M,, might go into an
infinite loop.

Sariel Har-Peled (UIUC) CS374 21 Fall 2017 21/5



Part |V

Equality

Sariel Har-Peled (UIUC) 2 Fall 2017



Equality is undecidable

EQuy = {(M, ) ‘ M and N are TM’s and L(M) = L(N)} .

The language EQr\; is undecidable. \

Sariel Har-Peled (UIUC) CS374 23 Fall 2017 23 /5



Proof

Suppose that we had a decider DeciderEqual for EQry;. Then we
can build a decider for Ety; as follows:

TM R:

Q Input = (M)

@ Include the (constant) code for a TM T that rejects all its
input. We denote the string encoding T by (T).

© Run DeciderEqual on (M, T).

© If DeciderEqual accepts, then accept.

@ If DeciderEqual rejects, then reject.

Sariel Har-Peled (UIUC) CS374 24 Fall 2017 24 /5



Part V

Regularity

Sariel Har-Peled (UIUC) Fall 2017



Many undecidable languages

© Almost any property defining a TM language induces a
language which is undecidable.

@ proofs all have the same basic pattern.
© Regularity language:

Regular,, = {(M) ‘ M isa TM and L(M) is regular} .
@ DeciderRegL: Assume TM decider for Regular ;.

© Reduction from halting requires to turn problem about deciding
whether a TM M accepts w (i.e., is w € Ar)) into a problem
about whether some T'M accepts a regular set of strings.

Sariel Har-Peled (UIUC) CS374 26 Fall 2017 26 /5



Proof continued...

@ Given M and w, consider the following TM M:V:
™ M. :
(i) Input = x
(ii) If x has the form a"b", halt and accept.
(iii) Otherwise, simulate M on w.
(iv) If the simulation accepts, then accept.
(v) If the simulation rejects, then reject.

@ not executing M/ |

Q feed string (M,) into DeciderRegL

© EmbedRegularString: program with input (M) and w, and
outputs (M ), encoding the program M.

@ If M accepts w, then any x accepted by M!: L(M!) = X*.

@ If M does not accept w, then L(M!) = {a"b" | n > 0}.

Sariel Har-Peled (UIUC) CS374 27 Fall 2017 27 /5



Proof continued...

Q a"b" is not regular...
@ Use DeciderReglL on M/, to distinguish these two cases.
© Note - cooked M! to the decider at hand.

© A decider for A1y as follows.
YetAnotherDecider-Atn({(M, w))
(M) < EmbedRegularString ((M, w))
r « DeciderRegL ({M.)).

return r

@ If DeciderRegl accepts = L(M!) regular (its X*)

Sariel Har-Peled (UIUC) CS374 28 Fall 2017 28 /5



Proof continued...

Q a"b" is not regular...
@ Use DeciderReglL on M/, to distinguish these two cases.
© Note - cooked M! to the decider at hand.
© A decider for A1y as follows.
YetAnotherDecider-Atn({(M, w))
(M) < EmbedRegularString ((M, w))
r « DeciderRegL ({M.)).
return r
@ If DeciderRegl accepts = L(M.) regular (its ¥*) —
M accepts w. So YetAnotherDecider-A 1y should accept
(M, w).

Sariel Har-Peled (UIUC) CS374 28 Fall 2017 28 /5



Proof continued...

Q a"b" is not regular...
@ Use DeciderReglL on M/, to distinguish these two cases.
© Note - cooked M! to the decider at hand.
© A decider for A1y as follows.
YetAnotherDecider-Atn({(M, w))
(M) < EmbedRegularString ((M, w))
r « DeciderRegL ({M.)).
return r
@ If DeciderRegl accepts = L(M.) regular (its ¥*) —
M accepts w. So YetAnotherDecider-A 1y should accept
(M, w).
@ If DeciderReglL rejects = L(M!)) is not regular =—>
L(M!) = a"b"

Sariel Har-Peled (UIUC) CS374 28 Fall 2017 28 /5



Proof continued...

Q a"b" is not regular...
@ Use DeciderReglL on M/, to distinguish these two cases.
© Note - cooked M! to the decider at hand.
© A decider for A1y as follows.
YetAnotherDecider-Atn({(M, w))
(M) < EmbedRegularString ((M, w))
r « DeciderRegL ({M.)).
return r
@ If DeciderRegl accepts = L(M.) regular (its ¥*) —
M accepts w. So YetAnotherDecider-A 1y should accept
(M, w).
@ If DeciderReglL rejects = L(M!)) is not regular =—>
L(M!) = a"b" = M does not accept w =—>
YetAnotherDecider- Aty should reject (M, w).

Sariel Har-Peled (UIUC) CS374 28 Fall 2017 28 /5




Rice theorem

The above proofs were somewhat repetitious...
...they imply a more general result.

Theorem 12 (Rice's Theorem.)

Suppose that L is a language of Turing machines; that is, each word
in L encodes a TM. Furthermore, assume that the following two
properties hold.

(a) Membership in L depends only on the Turing machine’s
language, i.e. if L(M) = L(N) then (M) € L < (N) € L.

(b) The set L is “non-trivial,” i.e. L # @ and L does not contain all
Turing machines.

Then L is a undecidable.

Sariel Har-Peled (UIUC) CS374 29 Fall 2017 29 /5



