Algorithms & Models of Computation CS/ECE 374, Fall 2017

Undecidability II: More problems via reductions

Lecture 21 Thursday, November 16, 2017

Turing machines...

TM = Turing machine = program.

Reminder: Undecidability

Definition 1

Language $L \subseteq \Sigma^*$ is undecidable if no program P, given $w \in \Sigma^*$ as input, can **always stop** and output whether $w \in L$ or $w \notin L$.

(Usually defined using TM not programs. But equivalent.

Reminder: Undecidability

Definition 1

Language $L \subseteq \Sigma^*$ is undecidable if no program P, given $w \in \Sigma^*$ as input, can **always stop** and output whether $w \in L$ or $w \notin L$.

(Usually defined using TM not programs. But equivalent.

3

Reminder: Undecidability

Definition 1

Language $L \subseteq \Sigma^*$ is undecidable if no program P, given $w \in \Sigma^*$ as input, can **always stop** and

output whether $w \in L$ or $w \notin L$.

(Usually defined using TM not programs. But equivalent.

3

Reminder: The following language is undecidable

Decide if given a program M, and an input w, does M accepts w. Formally, the corresponding language is

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}.$$

Definition 2

A **decider** for a language L, is a program (or a TM) that always stops, and outputs for any input string $w \in \Sigma^*$ whether or not $w \in L$.

A language that has a decider is **decidable**. Turing proved the following:

Theorem 3

A_{TM} is undecidable.

Reminder: The following language is undecidable

Decide if given a program M, and an input w, does M accepts w. Formally, the corresponding language is

$$\mathbf{A}_{\mathrm{TM}} = \left\{ \langle M, w \rangle \mid M \text{ is a } \mathrm{TM} \text{ and } M \text{ accepts } w \right\}.$$

Definition 2

A **decider** for a language L, is a program (or a TM) that always stops, and outputs for any input string $w \in \Sigma^*$ whether or not $w \in L$.

A language that has a decider is decidable.

Turing proved the following:

Theorem 3

 \mathbf{A}_{TM} is undecidable.

Reminder: The following language is undecidable

Decide if given a program M, and an input w, does M accepts w. Formally, the corresponding language is

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}.$$

Definition 2

A **decider** for a language L, is a program (or a TM) that always stops, and outputs for any input string $w \in \Sigma^*$ whether or not $w \in L$.

A language that has a decider is **decidable**. Turing proved the following:

Theorem 3

A_{TM} is undecidable.

Part I

Reductions

Reduction

Meta definition: Problem **A reduces** to problem **B**, if given a solution to **B**, then it implies a solution for **A**. Namely, we can solve **B** then we can solve **A**. We will done this by $A \implies B$.

Definition 4

oracle ORAC for language L is a function that receives as a word w, returns TRUE $\iff w \in L$.

Definition 5

A language X reduces to a language Y, if one can construct a TM decider for X using a given oracle $ORAC_Y$ for Y. We will denote this fact by $X \implies Y$.

Reduction

Meta definition: Problem **A reduces** to problem **B**, if given a solution to **B**, then it implies a solution for **A**. Namely, we can solve **B** then we can solve **A**. We will done this by $A \implies B$.

Definition 4

oracle ORAC for language L is a function that receives as a word w, returns TRUE $\iff w \in L$.

Definition 5

A language X reduces to a language Y, if one can construct a TM decider for X using a given oracle $ORAC_Y$ for Y. We will denote this fact by $X \implies Y$.

Reduction

Meta definition: Problem **A reduces** to problem **B**, if given a solution to **B**, then it implies a solution for **A**. Namely, we can solve **B** then we can solve **A**. We will done this by $A \implies B$.

Definition 4

oracle ORAC for language L is a function that receives as a word w, returns TRUE $\iff w \in L$.

Definition 5

A language X reduces to a language Y, if one can construct a TM decider for X using a given oracle $ORAC_Y$ for Y. We will denote this fact by $X \implies Y$.

- B: Problem/language for which we want to prove undecidable.
- 2 Proof via reduction. Result in a proof by contradiction.
- L: language of B.
- Assume L is decided by TM M.
- © Create a decider for known undecidable problem A using M.
- \odot Result in decider for **A** (i.e., $A_{\rm TM}$).
- Contradiction A is not decidable
- Thus, L must be not decidable.

- B: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- 3 L: language of B.
- \bullet Assume L is decided by TM M.
- © Create a decider for known undecidable problem A using M.
- \bullet Result in decider for **A** (i.e., \mathbf{A}_{TM}).
- Contradiction A is not decidable.
- Thus, L must be not decidable.

- **1** B: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- **1** L: language of **B**.
- Assume L is decided by TM M.
- © Create a decider for known undecidable problem A using M.
- \odot Result in decider for A (i.e., $A_{\rm TM}$).
- Contradiction A is not decidable
- Thus, L must be not decidable.

- B: Problem/language for which we want to prove undecidable.
- 2 Proof via reduction. Result in a proof by contradiction.
- 3 L: language of B.
- Assume L is decided by TM M.
- © Create a decider for known undecidable problem A using M.
- \odot Result in decider for **A** (i.e., \mathbf{A}_{TM}).
- Contradiction A is not decidable.
- Thus, L must be not decidable.

- B: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- 3 L: language of B.
- Assume L is decided by TM M.
- \odot Create a decider for known undecidable problem **A** using M.
- \bullet Result in decider for A (i.e., A_{TM}).
- Contradiction A is not decidable.
- Thus, L must be not decidable.

- **1** B: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- 3 L: language of B.
- Assume L is decided by TM M.
- \odot Create a decider for known undecidable problem **A** using M.
- **1** Result in decider for **A** (i.e., A_{TM}).
- Contradiction A is not decidable.
- Thus, L must be not decidable

- **1** B: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- 3 L: language of B.
- Assume L is decided by TM M.
- \odot Create a decider for known undecidable problem **A** using M.
- **1** Result in decider for **A** (i.e., A_{TM}).
- Contradiction A is not decidable.
- Thus, L must be not decidable.

- **B**: Problem/language for which we want to prove undecidable.
- Proof via reduction. Result in a proof by contradiction.
- 3 L: language of B.
- Assume L is decided by TM M.
- \odot Create a decider for known undecidable problem **A** using M.
- **1** Result in decider for **A** (i.e., A_{TM}).
- O Contradiction A is not decidable.
- Thus, L must be not decidable.

Reduction implies decidability

Lemma 6

Let X and Y be two languages, and assume that $X \implies Y$. If Y is decidable then X is decidable.

Proof.

Let T be a decider for Y (i.e., a program or a TM). Since X reduces to Y, it follows that there is a procedure $T_{X|Y}$ (i.e., decider) for X that uses an oracle for Y as a subroutine. We replace the calls to this oracle in $T_{X|Y}$ by calls to T. The resulting program T_X is a decider and its language is X. Thus X is decidable (or more formally TM decidable).

8

The countrapositive...

Lemma 7

Let X and Y be two languages, and assume that $X \implies Y$. If X is undecidable then Y is undecidable.

Part II

Halting

The halting problem

Language of all pairs $\langle M, w \rangle$ such that M halts on w:

$$A_{\mathrm{Halt}} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ stops on } w \right\}.$$

Similar to language already known to be undecidable:

$$\mathbf{A}_{\mathrm{TM}} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \right\}.$$

The halting problem

Language of all pairs $\langle M, w \rangle$ such that M halts on w:

$$A_{\mathrm{Halt}} = \left\{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ stops on } w \right\}.$$

Similar to language already known to be undecidable:

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a } TM \text{ and } M \text{ accepts } w \}.$$

On way to proving that Halting is undecidable...

Lemma 8

The language $A_{\rm TM}$ reduces to $A_{\rm Halt}$. Namely, given an oracle for $A_{\rm Halt}$ one can build a decider (that uses this oracle) for $A_{\rm TM}$.

On way to proving that Halting is undecidable...

Proof of lemma

Proof.

Let $ORAC_{Halt}$ be the given oracle for A_{Halt} . We build the following decider for A_{TM} .

```
Decider-A_{\mathsf{TM}}(\langle M, w \rangle)

res \leftarrow \mathsf{ORAC}_{\mathit{Halt}}(\langle M, w \rangle)

// if M does not halt on w then reject.

if res = \text{reject then}

halt and reject.

// M halts on w since res = \text{accept}.

// Simulating M on w terminates in finite time.

res_2 \leftarrow \mathsf{Simulate} \ M on w.

return \ res_2.
```

This procedure always return and as such its a decider for A_{TM} .

The Halting problem is not decidable

Theorem 9

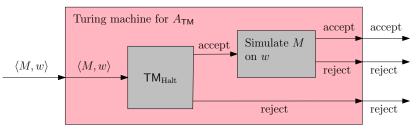
The language A_{Halt} is not decidable.

Proof.

Assume, for the sake of contradiction, that A_{Halt} is decidable. As such, there is a TM, denoted by TM_{Halt} , that is a decider for A_{Halt} . We can use TM_{Halt} as an implementation of an oracle for A_{Halt} , which would imply by Lemma \ref{halt} ? that one can build a decider for A_{TM} . However, A_{TM} is undecidable. A contradiction. It must be that A_{Halt} is undecidable.

14

The same proof by figure...



... if $A_{\rm Halt}$ is decidable, then $A_{\rm TM}$ is decidable, which is impossible.

Part III

Emptiness

The language of empty languages

- **2** TM_{ETM} : Assume we are given this decider for E_{TM} .
- **3** Need to use TM_{ETM} to build a decider for A_{TM} .
- ① Decider for A_{TM} is given M and w and must decide whether M accepts w.
- Restructure question to be about Turing machine having an empty language.
- **o** Somehow make the second input (w) disappear.
- ① Idea: hard-code w into M, creating a TM M_w which runs M on the fixed string w.
- - Input = x (which will be ignored)
 - Simulate M on w.
 - If the simulation accepts, accept. If the simulation rejects, reject.

The language of empty languages

- $E_{\text{TM}} = \left\{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \right\}.$
- **2** TM_{ETM} : Assume we are given this decider for E_{TM} .
- **1** Need to use TM_{ETM} to build a decider for A_{TM} .
- ① Decider for A_{TM} is given M and w and must decide whether M accepts w.
- Restructure question to be about Turing machine having an empty language.
- **o** Somehow make the second input (w) disappear.
- Idea: hard-code w into M, creating a TM M_w which runs M on the fixed string w.
- **◎** TM *M*_w:
 - Input = x (which will be ignored)
 - \odot Simulate M on w.
 - If the simulation accepts, accept. If the simulation rejects, reject.

Embedding strings...

- **1** Given program $\langle M \rangle$ and input w...
- ② ...can output a program $\langle M_w \rangle$.
- **3** The program M_w simulates M on w. And accepts/rejects accordingly.
- **EmbedString**($\langle M, w \rangle$) input two strings $\langle M \rangle$ and w, and output a string encoding $(TM) \langle M_w \rangle$.
- \bigcirc What is $L(M_w)$?
- ⑤ Since M_w ignores input x.. language M_w is either Σ^* or \emptyset . It is Σ^* if M accepts w, and it is \emptyset if M does not accept w.

Embedding strings...

- **1** Given program $\langle M \rangle$ and input w...
- ② ...can output a program $\langle M_w \rangle$.
- **1** The program M_w simulates M on w. And accepts/rejects accordingly.
- **EmbedString**($\langle M, w \rangle$) input two strings $\langle M \rangle$ and w, and output a string encoding $(TM) \langle M_w \rangle$.
- What is $L(M_w)$?
- ⑤ Since M_w ignores input x.. language M_w is either Σ^* or \emptyset . It is Σ^* if M accepts w, and it is \emptyset if M does not accept w.

Embedding strings...

- **1** Given program $\langle M \rangle$ and input w...
- ② ...can output a program $\langle M_w \rangle$.
- **1** The program M_w simulates M on w. And accepts/rejects accordingly.
- **EmbedString**($\langle M, w \rangle$) input two strings $\langle M \rangle$ and w, and output a string encoding $(TM) \langle M_w \rangle$.
- What is $L(M_w)$?
- Since M_w ignores input x.. language M_w is either Σ^* or \emptyset . It is Σ^* if M accepts w, and it is \emptyset if M does not accept w.

Emptiness is undecidable

Theorem 10

The language E_{TM} is undecidable.

- **1** Assume (for contradiction), that E_{TM} is decidable.
- 2 TM_{FTM} be its decider.
- Build decider AnotherDecider-A_{TM} for A_{TM}:

```
AnotherDecider-A_{TM}(\langle M, w \rangle)
\langle M_w \rangle \leftarrow \text{EmbedString}(\langle M, w \rangle)
r \leftarrow TM_{ETM}(\langle M_w \rangle).
if r = \text{accept then}
return reject
// TM_{ETM}(\langle M_w \rangle) rejected its input return accept
```

Emptiness is undecidable...

Proof continued

Consider the possible behavior of **AnotherDecider**- A_{TM} on the input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is empty. This implies that M does not accept w. As such, Another Decider- A_{TM} rejects its input $\langle M, w \rangle$.
- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is not empty. This implies that M accepts w. So **AnotherDecider-A**_{TM} accepts $\langle M, w \rangle$.
- $\implies \text{AnotherDecider-} \mathbf{A}_{\text{TM}} \text{ is decider for } \mathbf{A}_{\text{TM}}.$
- But $A_{\rm TM}$ is undecidable...
- ...must be assumption that $E_{\rm TM}$ is decidable is false.

Emptiness is undecidable...

Proof continued

Consider the possible behavior of **AnotherDecider**- A_{TM} on the input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is empty. This implies that M does not accept w. As such, Another Decider- A_{TM} rejects its input $\langle M, w \rangle$.
- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is not empty. This implies that M accepts w. So AnotherDecider- A_{TM} accepts $\langle M, w \rangle$.

 \implies Another Decider - A_{TM} is decider for A_{TM} .

But A_{TM} is undecidable...

...must be assumption that $E_{\rm TM}$ is decidable is false.

Emptiness is undecidable...

Proof continued

Consider the possible behavior of **AnotherDecider-A_{TM}** on the input $\langle M, w \rangle$.

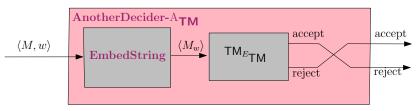
- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is empty. This implies that M does not accept w. As such, Another Decider- A_{TM} rejects its input $\langle M, w \rangle$.
- If TM_{ETM} accepts $\langle M_w \rangle$, then $L(M_w)$ is not empty. This implies that M accepts w. So **AnotherDecider-A**_{TM} accepts $\langle M, w \rangle$.

 \implies Another Decider - A_{TM} is decider for A_{TM} .

But A_{TM} is undecidable...

...must be assumption that $E_{\rm TM}$ is decidable is false.

Emptiness is undecidable via diagram



AnotherDecider- A_{TM} never actually runs the code for M_w . It hands the code to a function TM_{ETM} which analyzes what the code would do if run it. So it does not matter that M_w might go into an infinite loop.

Part IV

Equality

Equality is undecidable

$$EQ_{\mathrm{TM}} = \left\{ \langle M, N \rangle \mid M \text{ and } N \text{ are } \mathrm{TM}\text{'s and } L(M) = L(N) \right\}.$$

Lemma 11

The language EQ_{TM} is undecidable.

Proof

Proof.

Suppose that we had a decider **DeciderEqual** for EQ_{TM} . Then we can build a decider for E_{TM} as follows:

TM R:

- 1 Input = $\langle M \rangle$
- 2 Include the (constant) code for a TM T that rejects all its input. We denote the string encoding T by $\langle T \rangle$.
- 3 Run DeciderEqual on $\langle M, T \rangle$.
- If DeciderEqual accepts, then accept.
- If DeciderEqual rejects, then reject.

Part V

Regularity

Many undecidable languages

- Almost any property defining a TM language induces a language which is undecidable.
- proofs all have the same basic pattern.
- Regularity language: $\operatorname{Regular}_{TM} = \left\{ \langle M \rangle \mid M \text{ is a } TM \text{ and } L(M) \text{ is regular} \right\}.$
- Opening Decider Regular TM decider for Regular TM.
- **3** Reduction from halting requires to turn problem about deciding whether a TM M accepts w (i.e., is $w \in A_{TM}$) into a problem about whether some TM accepts a regular set of strings.

• Given M and w, consider the following TM M'_w :

TM **M**'_w:

- (i) Input = x
- (ii) If x has the form $a^n b^n$, halt and accept.
- (iii) Otherwise, simulate **M** on **w**.
- (iv) If the simulation accepts, then accept.
- (v) If the simulation rejects, then reject.
- 2 not executing M'_{w} !
- feed string $\langle M'_w \rangle$ into **DeciderRegL**
- **EmbedRegularString**: program with input $\langle M \rangle$ and w, and outputs $\langle M'_w \rangle$, encoding the program M'_w .
- **1** If M accepts w, then any x accepted by M'_w : $L(M'_w) = \Sigma^*$.

- aⁿbⁿ is not regular...
- ② Use **DeciderRegL** on M'_{w} to distinguish these two cases.
- **3** Note cooked M'_{w} to the decider at hand.
- $oldsymbol{4}$ A decider for \mathbf{A}_{TM} as follows.

```
YetAnotherDecider-A_{TM}(\langle M, w \rangle)

\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)

r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle).

return r
```

- If $\mathbf{DeciderRegL}$ accepts $\Longrightarrow L(M'_w)$ regular (its Σ^*) \Longrightarrow M accepts w. So $\mathbf{YetAnotherDecider}$ - \mathbf{A}_{TM} should accept $\langle M, w \rangle$.
- o If **DeciderRegL** rejects $\Longrightarrow L(M'_w)$ is not regular $\Longrightarrow L(M'_w) = a^n b^n \Longrightarrow M$ does not accept $w \Longrightarrow YetAnotherDecider-<math>A_{TM}$ should reject $\langle M, w \rangle$.

- aⁿbⁿ is not regular...
- ② Use **DeciderRegL** on M'_{w} to distinguish these two cases.
- **1** Note cooked M'_w to the decider at hand.
- $oldsymbol{0}$ A decider for \mathbf{A}_{TM} as follows.

```
YetAnotherDecider-A_{TM}(\langle M, w \rangle)

\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)

r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle).

return r
```

- **1** If **DeciderRegL** accepts $\implies L(M'_w)$ regular (its Σ^*) \implies M accepts w. So **YetAnotherDecider-A**_{TM} should accept $\langle M, w \rangle$.
- **⑤** If **DeciderRegL** rejects $\Longrightarrow L(M'_w)$ is not regular $\Longrightarrow L(M'_w) = a^n b^n \Longrightarrow M$ does not accept $w \Longrightarrow YetAnotherDecider-A_{TM} should reject <math>\langle M, w \rangle$.

- aⁿbⁿ is not regular...
- ② Use **DeciderRegL** on M'_{w} to distinguish these two cases.
- **3** Note cooked M'_{w} to the decider at hand.
- $oldsymbol{0}$ A decider for \mathbf{A}_{TM} as follows.

```
YetAnotherDecider-A_{TM}(\langle M, w \rangle)

\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)

r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle).

return r
```

- If DeciderRegL accepts $\implies L(M'_w)$ regular (its Σ^*) \implies M accepts w. So $YetAnotherDecider-A_{TM}$ should accept $\langle M, w \rangle$.
- **⑤** If DeciderRegL rejects $\Longrightarrow L(M'_w)$ is not regular $\Longrightarrow L(M'_w) = a^n b^n \Longrightarrow M$ does not accept $w \Longrightarrow YetAnotherDecider-A_{TM} should reject <math>\langle M, w \rangle$.

- aⁿbⁿ is not regular...
- ② Use **DeciderRegL** on M'_{w} to distinguish these two cases.
- **3** Note cooked M'_{w} to the decider at hand.
- $oldsymbol{4}$ A decider for \mathbf{A}_{TM} as follows.

```
YetAnotherDecider-A_{TM}(\langle M, w \rangle)

\langle M'_w \rangle \leftarrow \text{EmbedRegularString}(\langle M, w \rangle)

r \leftarrow \text{DeciderRegL}(\langle M'_w \rangle).

return r
```

- If **DeciderRegL** accepts $\implies L(M'_w)$ regular (its Σ^*) \implies M accepts w. So **YetAnotherDecider-A**_{TM} should accept $\langle M, w \rangle$.
- If DeciderRegL rejects $\Longrightarrow L(M'_w)$ is not regular $\Longrightarrow L(M'_w) = a^n b^n \Longrightarrow M$ does not accept $w \Longrightarrow YetAnotherDecider-A_{TM}$ should reject $\langle M, w \rangle$.

Rice theorem

The above proofs were somewhat repetitious... ...they imply a more general result.

Theorem 12 (Rice's Theorem.)

Suppose that L is a language of Turing machines; that is, each word in L encodes a TM. Furthermore, assume that the following two properties hold.

- (a) Membership in L depends only on the Turing machine's language, i.e. if L(M) = L(N) then $\langle M \rangle \in L \Leftrightarrow \langle N \rangle \in L$.
- (b) The set L is "non-trivial," i.e. $L \neq \emptyset$ and L does not contain all Turing machines.

Then L is a undecidable.