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Part I

(Polynomial Time) Reductions
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Reductions

Reduction from Problem X to Problem Y means (informally) that if
we have an algorithm for Problem Y , we can use it to find an
algorithm for Problem X .

Using Reductions
1 We use reductions to find algorithms to solve problems.
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Reductions

Reduction from Problem X to Problem Y means (informally) that if
we have an algorithm for Problem Y , we can use it to find an
algorithm for Problem X .

Using Reductions
1 We use reductions to find algorithms to solve problems.
2 We also use reductions to show that we can’t find algorithms for

some problems. (We say that these problems are hard.)
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Reductions for decision problems/languages

For languages LX , LY , a reduction from LX to LY is:
1 An algorithm …
2 Input: w ∈ Σ∗

3 Output: w ′ ∈ Σ∗

4 Such that:
w ∈ LY ⇐⇒ w ′ ∈ LX

(Actually, this is only one type of reduction, but this is the one we’ll
use most often.) There are other kinds of reductions.
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Reductions for decision problems/languages

For decision problems X,Y , a reduction from X to Y is:
1 An algorithm …
2 Input: IX , an instance of X .
3 Output: IY an instance of Y .
4 Such that:

IY is YES instance of Y ⇐⇒ IX is YES instance of X
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Using reductions to solve problems

1 R: Reduction X → Y
2 AY : algorithm for Y :
3 =⇒ New algorithm for X :

AX(IX):
// IX: instance of X.
IY ⇐ R(IX)
return AY (IY )

If R and AY polynomial-time =⇒ AX polynomial-time.
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Using reductions to solve problems

1 R: Reduction X → Y
2 AY : algorithm for Y :
3 =⇒ New algorithm for X :

AX(IX):
// IX: instance of X.
IY ⇐ R(IX)
return AY (IY )

AY

IY
YES

NO

IX
R

AX
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Comparing Problems

1 If there is reduction from X to Y ...
2 “Problem X is no harder to solve than Problem Y ”.
3 If Problem X reduces to Problem Y (we write X ≤ Y ), then X

cannot be harder to solve than Y .
4 X ≤ Y :

1 X is no harder than Y , or
2 Y is at least as hard as X .
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Part II

Examples of Reductions
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Independent Sets and Cliques

Given a graph G, a set of vertices V ′ is:
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Independent Sets and Cliques

Given a graph G, a set of vertices V ′ is:
1 independent set: no two vertices of V ′ connected by an edge.
2 clique: every pair of vertices in V ′ is connected by an edge of

G.
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The Independent Set and Clique Problems

Problem: Independent Set
Instance: A graph G and an integer k.
Question: Does G has an independent set of size ≥ k?
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The Independent Set and Clique Problems

Problem: Independent Set
Instance: A graph G and an integer k.
Question: Does G has an independent set of size ≥ k?

Problem: Clique
Instance: A graph G and an integer k.
Question: Does G has a clique of size ≥ k?
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Recall

For decision problems X,Y , a reduction from X to Y is:
1 An algorithm …
2 that takes IX , an instance of X as input …
3 and returns IY , an instance of Y as output …
4 such that the solution (YES/NO) to IY is the same as the

solution to IX .
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Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k.

G:
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Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k.

Reduction given < G, k > outputs < G, k > where G is the
complement of G. G has an edge (u, v) if and only if (u, v) is not
an edge of G.

G: G:
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Reducing Independent Set to Clique

An instance of Independent Set is a graph G and an integer k.

Reduction given < G, k > outputs < G, k > where G is the
complement of G. G has an edge (u, v) if and only if (u, v) is not
an edge of G.

Independent set in G. Clique in G
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Correctness of reduction

Lemma
G has an independent set of size k if and only if G has a clique of
size k.

Proof.
Need to prove two facts:
G has independent set of size at least k implies that G has a clique
of size at least k.
G has a clique of size at least k implies that G has an independent
set of size at least k.
Easy to see both from the fact that S ⊆ V is an independent set in
G if and only if S is a clique in G.
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Independent Set and Clique

1 Independent Set ≤ Clique.
What does this mean?

2 If have an algorithm for Clique, then we have an algorithm for
Independent Set.

3 Clique is at least as hard as Independent Set.
4 Also... Clique ≤ Independent Set. Why? Thus Clique and

Independent Set are polnomial-time equivalent.
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Independent Set and Clique

Assume you can solve the Clique problem in T(n) time. Then you
can solve the Independent Set problem in

(A) O(T(n)) time.
(B) O(n log n + T(n)) time.
(C) O(n2T(n2)) time.
(D) O(n4T(n4)) time.
(E) O(n2 + T(n2)) time.
(F) Does not matter - all these are polynomial if T(n) is

polynomial, which is good enough for our purposes.
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DFA Universality

A DFA M is universal if it accepts every string.
That is, L(M) = Σ∗, the set of all strings.

Problem (DFA universality)
Input: A DFA M.
Goal: Is M universal?

How do we solve DFA Universality?
We check if M has any reachable non-final state.
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NFA Universality

An NFA N is said to be universal if it accepts every string. That is,
L(N) = Σ∗, the set of all strings.

Problem (NFA universality)
Input: A NFA M.
Goal: Is M universal?

How do we solve NFA Universality?
Reduce it to DFA Universality?
Given an NFA N, convert it to an equivalent DFA M, and use the
DFA Universality Algorithm.
The reduction takes exponential time!
NFA Universality is known to be PSPACE-Complete and we do not
expect a polynomial-time algorithm.
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Polynomial-time reductions

We say that an algorithm is efficient if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in
polynomial-time reductions. Reductions that take longer are not
useful.

If we have a polynomial-time reduction from problem X to problem
Y (we write X ≤P Y ), and a poly-time algorithm AY for Y , we
have a polynomial-time/efficient algorithm for X .

AY

IY
YES

NO

IX
R

AX
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Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision
problem Y is an algorithm A that has the following properties:

1 given an instance IX of X , A produces an instance IY of Y
2 A runs in time polynomial in |IX |.
3 Answer to IX YES iff answer to IY is YES.

Proposition
If X ≤P Y then a polynomial time algorithm for Y implies a
polynomial time algorithm for X .

Such a reduction is called a Karp reduction. Most reductions we
will need are Karp reductions.Karp reductions are the same as
mapping reductions when specialized to polynomial time for the
reduction step.
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Reductions again...

Let X and Y be two decision problems, such that X can be solved in
polynomial time, and X ≤P Y . Then

(A) Y can be solved in polynomial time.
(B) Y can NOT be solved in polynomial time.
(C) If Y is hard then X is also hard.
(D) None of the above.
(E) All of the above.
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Polynomial-time reductions and hardness

For decision problems X and Y , if X ≤P Y , and Y has an efficient
algorithm, X has an efficient algorithm.

If you believe that Independent Set does not have an efficient
algorithm, why should you believe the same of Clique?

Because we showed Independent Set ≤P Clique. If Clique had an
efficient algorithm, so would Independent Set!

If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm!
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Polynomial-time reductions and instance sizes

Proposition
Let R be a polynomial-time reduction from X to Y . Then for any
instance IX of X , the size of the instance IY of Y produced from IX
by R is polynomial in the size of IX .

Proof.
R is a polynomial-time algorithm and hence on input IX of size |IX |
it runs in time p(|IX |) for some polynomial p().
IY is the output of R on input IX .
R can write at most p(|IX |) bits and hence |IY | ≤ p(|IX |).

Note: Converse is not true. A reduction need not be polynomial-time
even if output of reduction is of size polynomial in its input.
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Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision
problem Y is an algorithm A that has the following properties:

1 Given an instance IX of X , A produces an instance IY of Y .
2 A runs in time polynomial in |IX |. This implies that |IY | (size

of IY ) is polynomial in |IX |.
3 Answer to IX YES iff answer to IY is YES.

Proposition
If X ≤P Y then a polynomial time algorithm for Y implies a
polynomial time algorithm for X .
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Transitivity of Reductions

Proposition
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Note: X ≤P Y does not imply that Y ≤P X and hence it is very
important to know the FROM and TO in a reduction.

To prove X ≤P Y you need to show a reduction FROM X TO Y
That is, show that an algorithm for Y implies an algorithm for X .
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