Algorithms & Models of Computation
CS/ECE 374, Fall 2017

Non-deterministic Finite
Automata (NFAs)

Lecture 4
Thursday, September 7, 2017

Sariel Har-Peled (UIUC) CS374 1 Fall 2017 1/39

Part |

NFA Introduction

Sariel Har-Peled (UIUC) CS374 2 Fall 2017

2/ 39

Non-deterministic Finite State Automata (NFAs)

0,1

0,1

[

O O=Cm 0
=

Differences from DFA
@ From state g on same letter a € X multiple possible states
@ No transitions from g on some letters
@ e-transitions!
Questions:
@ Is this a “real” machine?
e What does it do?

Sariel Har-Peled (UIUC) CS374 3 Fall 2017 3 /39

NFA behavior

0,1 0,1
OO Oan O
=

Machine on input string w from state g can lead to set of states
(could be empty)

@ From g. on 1
e From g. on 0
@ From gg on €
e From g. on 01
°

From ggo on 00

Sariel Har-Peled (UIUC) CS374 4 Fall 2017

4/39

NFA acceptance: informal

0,1 0,1
N\ [N

Informal definition: An NFA N accepts a string w iff some
accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by
L(N) and defined as: L(N) = {w | N accepts w}.

Sariel Har-Peled (UIUC) CS374 5 Fall 2017 5/39

Simulating NFA

Example the first

(N1)

Run it on input ababa.
Idea: Keep track of the states where the NFA might be at any given

time.
a,b a,

=

A __——{ 3
Sariel Har-Peled (UIUC) Fall 2017 7 /39

NFA acceptance: example

0.1 0.1
[y [y

Is 01 accepted?

Is 001 accepted?

Is 100 accepted?

Are all strings in 1*01 accepted?

What is the language accepted by N7

Comment: Unlike DFAs, it is easier in NFAs to show that a string
is accepted than to show that a string is not accepted.

Sariel Har-Peled (UIUC) CS374 6 Fall 2017 6 /39

Remainine inout: baba

Formal Tuple Notation

Definition
A non-deterministic finite automata (NFA) N = (Q, X, 4, s, A) is
a five tuple where

@ @ is a finite set whose elements are called states,

@ X is a finite set called the input alphabet,

0 d:QxXU{e} — P(Q) is the transition function (here
P(Q) is the power set of Q),

@ s € @ is the start state,
@ A C Q@ is the set of accepting/final states.

0(q,a) fora € X U {e} is a subset of Q@ — a set of states.

Sariel Har-Peled (UIUC) CS374 8 Fall 2017 8 /39

Reminder: Power set

For a set @ its power set is: P(Q) =29 = {X | X C Q} is the
set of all subsets of Q.

Example
Q={1,2,3,4}

{1,27 3’ 4} M
{2,3,4},{1,3,4},{1,2,4},{1,2,3},
P(Q) = {1,2},{1,3},{1,4},{2,3},{2,4},{3,4},
{1},{2}5[3},{4},

Sariel Har-Peled (UIUC) CS374 9 Fall 2017 9/39

Example

Transition function in detail...
0,1

0,1
[R
[9

9(qo,€) = {qo, oo}
0(qe,€) = {q:} 0(qo0,0) = {qoo}
5(q€, 0) = {qsa qU} 6(q0,]_) = {}
5(qsa 1) = {qs}

9(qoos €) = {qoo}
6(qoo, 0) = {}
6(qo0; 1) = {q,}

0(qp;€) = {ap}
0(qp,0) = {qp}
0(qp,1) = {aqp}

Sariel Har-Peled (UIUC) CS374 11 Fall 2017 11 /39

Example

0,1 0,1
R
(& ¢

o Q= {qea do, oo qp}

e X ={0,1}

4

°os=gq.

o A={q,}

Sariel Har-Peled (UIUC) CS374 10 Fall 2017 10 / 39

Extending the transition function to strings

© NFA N = (Q, X, 4, s, A)

@ 4(q, a): set of states that N can go to from g on reading
acxu{e}

© Want transition function §* : Q@ X £* — P(Q)

Q 6*(g, w): set of states reachable on input w starting in state q.

Sariel Har-Peled (UIUC) CS374 12 Fall 2017 12 /39

Extending the transition function to strings
Definition

For NFA N = (Q, X, 9,s,A) and g € Q the ereach(q) is the set
of all states that g can reach using only e-transitions.

(@)

1,0

Sariel Har-Peled (UIUC) CS374 13 Fall 2017 13 /39

Formal definition of language accepted by

Definition
A string w is accepted by NFA N if oy (s, w) N A # 0.

Definition
The language L(N) accepted by a NFA N = (Q, X, d,s, A) is

{w € T*|6(s,w) N A # 0}.

Important: Formal definition of the language of NFA above uses §*
and not 8. As such, one does not need to include e-transitions
closure when specifying §, since 6* takes care of that.

Sariel Har-Peled (UIUC) CS374 15 Fall 2017 15 / 39

Extending the transition function to strings

Definition
For NFA N = (Q, X, 9,s,A) and g € Q the ereach(q) is the set
of all states that g can reach using only e-transitions.

Definition
Inductive definition of §* : @ X ¥* — P(Q):
o if w = ¢, 6*(q, w) = ereach(q)
o ifw=awhereac X
0*(q, @) = Upcereach(q)(Ures(p,a)€reach(r))
o if w = ax,
0*(q, W) = Upeereach(q) (Ures(p,a)0*(r, X))

Sariel Har-Peled (UIUC) CS374 14 Fall 2017 14 / 39

Example

What is:
@ 0*(s,€)
e 6*(s,0)
e 0*(c,0)
e 6*(b,00)

Sariel Har-Peled (UIUC) CS374 16 Fall 2017 16 / 39

Another definition of computation

Definition

g —>n p: State p of NFA N is reachable from g on w <—

there exists a sequence of states rg, r1,. .., re and a sequence

X1y X25+ + « 3 Xk Where x; € X U {e}, for each i, such that:
@ rn=gq,
e for each i, riy1 € 6(riy Xit1),
@ ry, = p, and

@ W = X1X2X3 ° - Xk.

Definition
6*N(q,w) = {p €Q ’ q —n p}-

Why non-determinism?

@ Non-determinism adds power to the model; richer programming
language and hence (much) easier to “design” programs

e Fundamental in theory to prove many theorems

@ Very important in practice directly and indirectly

@ Many deep connections to various fields in Computer Science
and Mathematics

Many interpretations of non-determinism. Hard to understand at the
outset. Get used to it and then you will appreciate it slowly.

Sariel Har-Peled (UIUC) CS374 18 Fall 2017 18 / 39

Sariel Har-Peled (UIUC) CS374 17 Fall 2017 17 /39
Part Il
Constructing NFAs
Sariel Har-Peled (UIUC) CS374 19 Fall 2017 19 /39

DFAs and NFAs

@ Every DFA is a NFA so NFAs are at least as powerful as
DFAs.

@ NFAs prove ability to “guess and verify” which simplifies design
and reduces number of states

@ Easy proofs of some closure properties

Sariel Har-Peled (UIUC) CS374 20 Fall 2017 20/ 39

Example

Strings that represent decimal numbers.

N
@s,— >@o >@ .

Sariel Har-Peled (UIUC) CS374 21 Fall 2017 21 /39

Example

L, = {bitstrings that have a 1 k positions from the end}

Example

o {strings that contain CS374 as a substring}
@ {strings that contain CS374 or CS473 as a substring}
@ {strings that contain CS374 and CS473 as substrings}

Sariel Har-Peled (UIUC) CS374 22 Fall 2017 22 /39

Sariel Har-Peled (UIUC) CS374 23 Fall 2017 23 /39

A simple transformation

Theorem

For every NFA N there is another NFA N’ such that
L(N) = L(N’) and such that N’ has the following two properties:

@ N’ has single final state f that has no outgoing transitions
@ The start state s of N is different from f

Sariel Har-Peled (UIUC) CS374 24 Fall 2017 24 /39

Part |11

Closure Properties of NFAs

Sariel Har-Peled (UIUC) CS374 25 Fall 2017 25 /39
Closure under union
Theorem
For any two NFAs Ny and N, there is a NFA N such that
L(N) = L(Ny) U L(N>).
@ n @]
@ w @]
Sariel Har-Peled (UIUC) CS374 27 Fall 2017 27 / 39

Closure properties of NFAs
Are the class of languages accepted by NFAs closed under the
following operations?

@ union

@ intersection

@ concatenation

o Kleene star

@ complement

Sariel Har-Peled (UIUC) CS374 26 Fall 2017 26 /39
Closure under concatenation
Theorem
For any two NFAs Ny and N, there is a NFA N such that
L(N) = L(Ny)eL(N,).
@ ~» © @ ~ 0
Sariel Har-Peled (UIUC) CS374 28 Fall 2017 28 / 39

Closure under Kleene star

Theorem
For any NFA Ny there is a NFA N such that L(N) = (L(Ny))*. J

Sariel Har-Peled (UIUC) CS374 29 Fall 2017 29 /39

Closure under Kleene star

Theorem
For any NFA Ny there is a NFA N such that L(N) = (L(Ny))*. J

Sariel Har-Peled (UIUC) CS374 31 Fall 2017 31/39

Closure under Kleene star

Theorem

For any NFA Ny there is a NFA N such that L(N) = (L(Ny))*. J

Does not work! Why?

Sariel Har-Peled (UIUC) CS374 30

Fall 2017

30 /39

Part |V

s capture Regular Languages

Sariel Har-Peled (UIUC) CS374 32

Fall 2017

32 /39

Regular Languages Recap

Regular Languages Regular Expressions

0 regular @ denotes 0
{e} regular € denotes {e}
{a} regular fora e a denote {a}

R; U R, regular if both are ri + ro denotes R U R,
R;1 R regular if both are riro denotes R R»
R* is regular if R is r* denote R*

Regular expressions denote regular languages — they explicitly show
the operations that were used to form the language

Sariel Har-Peled (UIUC) CS374 33 Fall 2017 33 /39

NFAs and Regular Language

@ For every regular expression r show that there is a NFA N such
that L(r) = L(N)
@ Induction on length of r

Base cases: 0, {¢}, {a} fora € X.

Sariel Har-Peled (UIUC) CS374 35 Fall 2017 35 /39

NFAs and Regular Language

Theorem

For every regular language L there is an NFA N such that
L=L(N).

Proof strategy:

@ For every regular expression r show that there is a NFA N such
that L(r) = L(N)

@ Induction on length of r

Sariel Har-Peled (UIUC) CS374 34 Fall 2017 34 /39

NFAs and Regular Language

@ For every regular expression r show that there is a NFA N such
that L(r) = L(N)
@ Induction on length of r
Inductive cases:

@ n, rp regular expressions and r = r; + n,.
By induction there are NFAs Ny, N, s.t
L(N;) = L(n) and L(N,) = L(r2). We have already seen that
there is NFA N s.t L(N) = L(N;:) U L(N,), hence
L(N) = L(r)
@ r = nenr. Use closure of NFA languages under concatenation
e r = (n)*. Use closure of NFA languages under Kleene star

Sariel Har-Peled (UIUC) CS374 36 Fall 2017 36 /39

Example Example

(£+0)(1+10)° _> L3

(1+10)"

—> — L(1+10) —*J *<I,> - \1;

N

—s |(e+0)

Sariel Har-Peled (UIUC) CS374 37 Fall 2017 37 /39 Sariel Har-Peled (UIUC) CS374 38 Fall 2017 38 /39

Example

<=

€
1
o —_1
\5/
Final NFA simplified slightly to reduce states

Sariel Har-Peled (UIUC) CS374 39 Fall 2017 39 /39

	NFA Introduction
	Constructing NFAs
	Closure Properties of NFAs
	NFAs capture Regular Languages

