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How to prove non-regularity?

Claim: Language L is not regular.

Idea: Show # states in any DFA M for language L has infinite
number of states.

Lemma

Consider three strings x,y, w € X*.

M= (Q,X,d,s,A): DFA for language L C X*.

If 6*(s, xw) € A and 6*(s, yw) & A then 6*(s, x) # 6*(s,y).

Proof.

Assume for the sake of contradiction that §*(s, x) = §*(s, y).
= A3 d§*(s,xw) = *(6*(s, x), w) = *(6*(s, y), w)
=d0*(s,yw) ¢ A

= A 3 d*(s,xw) ¢ A. Impossible!
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Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are
the same.

Question: |s every language a regular language? No.
@ Each DFA M can be represented as a string over a finite
alphabet X by appropriate encoding
@ Hence number of regular languages is countably infinite
@ Number of languages is uncountably infinite

@ Hence there must be a non-regular language!
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Proof by figures

Not possible
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A Simple and Canonical Non-regular Language
L = {0%1% | i > 0} = {¢,01,0011,000111,--- ,}

Theorem
L is not regular.

Question: Proof?

Intuition: Any program to recognize L seems to require counting
number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?
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Proof by Contradiction

@ Suppose L is regular. Then there is a DFA M such that
L(M) = L.
o Let M =(Q,{0,1},4,s, A) where |Q| = n.

Consider strings €, 0,00, 000, - - - , 0" total of n + 1 strings.
What states does M reach on the above strings? Let q; = §*(s, 07).

By pigeon hole principle g; = g; for some 0 < i < j < n.
That is, M is in the same state after reading 0’ and 0/ where i # j.

M should accept 0717 but then it will also accept 0/17 where i # j.

This contradicts the fact that M accepts L. Thus, there is no DFA
for L.
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Generalizing the argument

Definition

For a language L over £ and two strings x,y € £*, x and y are
distinguishable with respect to L if there is a string w € X* such
that exactly one of xw, yw is in L.

X, y are indistinguishable with respect to L if there is no such w.

Example: If i 3% j, 0" and OV are distinguishable with respect to
L = {O1% | k > 0}

Example: 000 and 0000 are indistinguishable with respect to the
language L = {w | w has 00 as a substring}
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Wee Lemma

Lemma

Suppose L = L(M) for some DFA M = (Q, X, 9, s, A) and
suppose x, y are distinguishable with respect to L. Then

6*(s, x) # 6*(s,y).

Proof.

Since x, y are distinguishable let w be the distinguishing suffix. If
0*(s, x) = 0*(s, y) then M will either accept both the strings

xw, yw, or reject both. But exactly one of them is in L, a
contradiction. O
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Fooling Sets

Definition
For a language L over X a set of strings F (could be infinite) is a

fooling set or distinguishing set for L if every two distinct strings
X,y € F are distinguishable.

Example: F = {0 | i > 0} is a fooling set for the language
L = {0k1¥ | k > 0}.

Theorem

Suppose F is a fooling set for L. If F is finite then there is no DFA
M that accepts L with less than |F| states.
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Infinite Fooling Sets

Theorem

Suppose F is a fooling set for L. If F is finite then there is no DFA
M that accepts L with less than |F| states.

Corollary
If L has an infinite fooling set F then L is not regular.

Proof.

Suppose for contradiction that L = L(M) for some DFA M with n
states.

Any subset F’ of F is a fooling set. (Why?) Pick F’ C F arbitrarily
such that |F’| > n. By preceding theorem, we obtain a
contradiction. O

o’
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Proof of Theorem

Theorem

Suppose F is a fooling set for L. If F is finite then there is no DFA
M that accepts L with less than |F| states.

Proof.

Suppose there is a DFA M = (Q, X, 4, s, A) that accepts L. Let
Q= n.

If n < |F| then by pigeon hole principle there are two strings

x,y € F, x # y such that §*(s, x) = d*(s, y) but x, y are
distinguishable.

Implies that there is w such that exactly one of xw, yw is in L.
However, M's behavior on xw and yw is exactly the same and hence

M will accept both xw, yw or reject both. A contradiction. O]
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o {0k1% | kK > 0}

o {bitstrings with equal number of Os and 1s}
o {0k1% | k # £}

o {0F | k> 0}
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Exponential gap between NFA and DFA size

Ly = {w € {0,1}* | w has a 1 k positions from the end}
Recall that Ly is accepted by a NFA N with k + 1 states.

Theorem
Every DFA that accepts Ly has at least 2 states.

Claim
F={w € {0,1} : |w| = k} is a fooling set of size 2k for L.

4

Why?

@ Suppose a1az...ax and by b, ... by are two distinct bitstrings
of length k

o Let i be first index where a; # b;

o y = 0%——1 s a distinguishing suffix for the two strings
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How do pick a fooling set

How do we pick a fooling set F7

o If x,y arein F and x # y they should be distinguishable! Of
course.

@ All strings in F except maybe one should be prefixes of strings in
the language L.
For example if L = {0¥1% | kK > 0} do not pick 1 and 10
(say). Why?
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Part |

Non-regularity via closure properties
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Non-regularity via closure properties

L = {bitstrings with equal number of Os and 1s}
L' = {0k1k | Kk > 0}

Suppose we have already shown that L’ is non-regular. Can we show
that L is non-regular without using the fooling set argument from
scratch?

L"=LnNL(0*1*)
Claim: The above and the fact that L’ is non-regular implies L is
non-regular. Why?

Suppose L is regular. Then since L(0*1*) is regular, and regular
languages are closed under intersection, L’ also would be regular. But
we know L’ is not regular, a contradiction.
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Non-regularity via closure properties

General recipe:

Proving non-regularity: Summary

@ Method of distinguishing suffixes. To prove that L is non-regular
find an infinite fooling set.

@ Closure properties. Use existing non-regular languages and
regular languages to prove that some new language is
non-regular.

@ Pumping lemma. We did not cover it but it is sometimes an
easier proof technique to apply, but not as general as the fooling
set technique.
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Myhill-Nerode Theorem
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Indistinguishability

Recall:

Definition

For a language L over X and two strings x, y € X* we say that x
and y are distinguishable with respect to L if there is a string

w € X* such that exactly one of xw, yw isin L. x,y are
indistinguishable with respect to L if there is no such w.

Given language L over X define a relation =, over strings in £* as
follows: x =, y iff x and y are indistinguishable with respect to L.

Claim J

=, Is an equivalence relation over X*.

Therefore, =, partitions * into a collection of equivalence classes
X1, X050
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Claim J

=, is an equivalence relation over X*.

Therefore, =, partitions * into a collection of equivalence classes.

Claim

Let x,y be two distinct strings. If x, y belong to the same
equivalence class of =, then x,y are indistinguishable. Otherwise
they are distinguishable.

Corollary

If = is finite with n equivalence classes then there is a fooling set F
of size n for L. If =, is infinite then there is an infinite fooling set for
L.

4
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Myhill-Nerode Theorem
Theorem (Myhill-Nerode)

L is regular <= =, has a finite number of equivalence classes. If
=, is finite with n equivalence classes then there is a DFA M
accepting L with exactly n states and this is the minimum possible.

v

Corollary

A language L is non-regular if and only if there is an infinite fooling
set F for L.

Algorithmic implication: For every DFA M one can find in
polynomial time a DFA M’ such that L(M) = L(M’) and M’ has
the fewest possible states among all such DFAs.
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