
CS/ECE 374 ] Fall 2018

Y Homework 3 Z
Due Wednesday, September 26, 2018 at 10am

Groups of up to three people can submit joint solutions. Each problem should be submitted by
exactly one person, and the beginning of the homework should clearly state the Gradescope names
and email addresses of each group member. In addition, whoever submits the homework must tell
Gradescope who their other group members are.

The following unnumbered problems are not for submission or grading. No solutions for them will be
provided but you can discuss them on Piazza.

• Let L be an arbitrary regular language.

– Prove that the language palin(L){w | wwR ∈ L} is also regular.

– Prove that the language drome(L){w | wRw ∈ L} is also regular.

• Suppose F is a fooling set for a language L. Argue that F cannot contain two distinct string x , y
where both are not prefixes of strings in L.

• Prove that the language {0i1 j | gcd(i, j) = 1} is not regular.

• Consider the language L = {w : |w| = 1 mod 5}. We have already seen that this language is
regular. Prove that any DFA that accepts this language needs at least 5 states.

• Consider all regular expressions over an alphabet Σ. Each regular expression is a string over a
larger alphabet Σ′ = Σ∪ {;-Symbol,ε-Symbol,+, (, )}. We use ;-Symbol and ε-Symbol in place of
; and ε to avoid confusion with overloading; technically one should do it with +, (, ) as well. Let
RΣ be the language of regular expressions over Σ.

1. Prove that RΣ is not regular.

2. Prove that RΣ is a CFL by giving a CFG for it.

1. (a) Prove that the following languages are not regular by providing a fooling set. You need to
provide an infinite set and also prove that it is a valid fooling set for the given language.

i. L = {0i1 j2k | i + j = k+ 1}.
ii. Recall that a block in a string is a maximal non-empty substring of indentical symbols.

Let L be the set of all strings in {0,1}∗ that contain two non-empty blocks of 1s of unequal
length. For example, L contains the strings 01101111 and 01001011100010 but does not
contain the strings 000110011011 and 00000000111.

iii. L = {0n3
| n≥ 0}.

(b) Suppose L is not regular. Prove that L \ L′ is not regular for any finite language L′. Give a
simple example of a non-regular language L and a regular language L′ such that L \ L′ is
regular.
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2. Describe a context free grammar for the following languages. Clearly explain how they work and
the role of each non-terminal. Unclear grammars will receive little to no credit.

(a) {ai b jck | k = 3(i + j)}.
(b) {ai b jckd` | i, j, k,`≥ 0 and i + `= j + k}.
(c) L = {0, 1}∗ \ {0n12n | n≥ 0}. In other words the complement of the language {0n12n | n≥ 0}.

3. Given languages L1 and L2 we define insert(L1, L2) to be the language {uvw | v ∈ L1, uw ∈ L2}
to be the set of strings obtained by “inserting” a string of L1 into a string of L2. For example if
L1 = {is f un} and L2 = {0, CS} then

insert(L1, L2) = {is f un0, 0is f un, is f unCS, Cis f unS, CSis f un}

• The goal is to show that if L1 and L2 are regular languages then insert(L1, L2) is also regular.
In particular you should describe how to construct an NFA N = (Q,Σ,δ, s, A) from two DFAs
M1 = (Q1,Σ,δ1, s1, A1) and M2 = (Q2,Σ,δ2, s2, A2) such that L(N) = insert(L(M1), L(M2)).
You do not need to prove the correctness of your construction but you should explain the
ideas behind the construction (see lab 3 solutions).

• Not to submit: Describe an algorithm that given regular expressions r1 and r2 constructs a
regular expression r such that L(r) = insert(L(r1), L(r2)). Note that you would need to do
this from the inductive definitions of r1 and r2.

Solved problem

4. Let L be the set of all strings over {0,1}∗ with exactly twice as many 0s as 1s.

(a) Describe a CFG for the language L.
[Hint: For any string u define ∆(u) = #(0, u)− 2#(1, u). Introduce intermediate variables
that derive strings with ∆(u) = 1 and ∆(u) = −1 and use them to define a non-terminal that
generates L.]

Solution: S→ ε | SS | 00S1 | 0S1S0 | 1S00 �

(b) Prove that your grammar G is correct. As usual, you need to prove both L ⊆ L(G) and
L(G) ⊆ L.
[Hint: Let u≤i denote the prefix of u of length i. If ∆(u) = 1, what can you say about the
smallest i for which ∆(u≤i) = 1? How does u split up at that position? If ∆(u) = −1, what
can you say about the smallest i such that ∆(u≤i) = −1?]

Solution: We separately prove L ⊆ L(G) and L(G) ⊆ L as follows:

Claim 1. L(G) ⊆ L, that is, every string in L(G) has exactly twice as many 0s as 1s.
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Proof: As suggested by the hint, for any string u, let ∆(u) = #(0, u)− 2#(1, u). We need to
prove that ∆(w) = 0 for every string w ∈ L(G).

Let w be an arbitrary string in L(G), and consider an arbitrary derivation of w of length
k. Assume that ∆(x) = 0 for every string x ∈ L(G) that can be derived with fewer than
k productions.1 There are five cases to consider, depending on the first production in the
derivation of w.

• If w= ε, then #(0, w) = #(1, w) = 0 by definition, so ∆(w) = 0.
• Suppose the derivation begins S  SS ∗ w. Then w = x y for some strings x , y ∈ L(G),

each of which can be derived with fewer than k productions. The inductive hypothesis
implies ∆(x) =∆(y) = 0. It immediately follows that ∆(w) = 0.2

• Suppose the derivation begins S  00S1 ∗ w. Then w = 00x1 for some string x ∈ L(G).
The inductive hypothesis implies ∆(x) = 0. It immediately follows that ∆(w) = 0.

• Suppose the derivation begins S  1S00 ∗ w. Then w = 1x00 for some string x ∈ L(G).
The inductive hypothesis implies ∆(x) = 0. It immediately follows that ∆(w) = 0.

• Suppose the derivation begins S   0S1S1  ∗ w. Then w = 0x1y0 for some strings
x , y ∈ L(G). The inductive hypothesis implies ∆(x) =∆(y) = 0. It immediately follows
that ∆(w) = 0.

In all cases, we conclude that ∆(w) = 0, as required. �

Claim 2. L ⊆ L(G); that is, G generates every binary string with exactly twice as many 0s
as 1s.

Proof: As suggested by the hint, for any string u, let ∆(u) = #(0, u) − 2#(1, u). For any
string u and any integer 0≤ i ≤ |u|, let ui denote the ith symbol in u, and let u≤i denote the
prefix of u of length i.

Let w be an arbitrary binary string with twice as many 0s as 1s. Assume that G generates
every binary string x that is shorter than w and has twice as many 0s as 1s. There are two
cases to consider:

• If w= ε, then ε ∈ L(G) because of the production S→ ε.
• Suppose w is non-empty. To simplify notation, let ∆i =∆(w≤i) for every index i, and

observe that ∆0 =∆|w| = 0. There are several subcases to consider:

– Suppose∆i = 0 for some index 0< i < |w|. Then we can write w = x y , where x and
y are non-empty strings with ∆(x) =∆(y) = 0. The induction hypothesis implies
that x , y ∈ L(G), and thus the production rule S→ SS implies that w ∈ L(G).

– Suppose ∆i > 0 for all 0 < i < |w|. Then w must begin with 00, since otherwise
∆1 = −2 or ∆2 = −1, and the last symbol in w must be 1, since otherwise ∆|w|−1 =
−1. Thus, we can write w= 00x1 for some binary string x . We easily observe that
∆(x) = 0, so the induction hypothesis implies x ∈ L(G), and thus the production
rule S→ 00S1 implies w ∈ L(G).

– Suppose ∆i < 0 for all 0 < i < |w|. A symmetric argument to the previous case
implies w = 1x00 for some binary string x with ∆(x) = 0. The induction hypothesis
implies x ∈ L(G), and thus the production rule S→ 1S00 implies w ∈ L(G).

1Alternatively: Consider the shortest derivation of w, and assume ∆(x) = 0 for every string x ∈ L(G) such that |x |< |w|.
2Alternatively: Suppose the shortest derivation of w begins S   SS  ∗ w. Then w = x y for some strings x , y ∈ L(G).

Neither x or y can be empty, because otherwise we could shorten the derivation of w. Thus, x and y are both shorter than w,
so the induction hypothesis implies. . . . We need some way to deal with the decompositions w = ε • w and w = w • ε, which are
both consistent with the production S→ SS, without falling into an infinite loop.
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– Finally, suppose none of the previous cases applies: ∆i < 0 and ∆ j > 0 for some
indices i and j, but ∆i 6= 0 for all 0< i < |w|.

Let i be the smallest index such that ∆i < 0. Because ∆ j either increases by 1
or decreases by 2 when we increment j, for all indices 0 < j < |w|, we must have
∆ j > 0 if j < i and ∆ j < 0 if j ≥ i.

In other words, there is a unique index i such that ∆i−1 > 0 and ∆i < 0. In
particular, we have ∆1 > 0 and ∆|w|−1 < 0. Thus, we can write w = 0x1y0 for some
binary strings x and y , where |0x1|= i.

We easily observe that ∆(x) = ∆(y) = 0, so the inductive hypothesis implies
x , y ∈ L(G), and thus the production rule S→ 0S1S0 implies w ∈ L(G).

In all cases, we conclude that G generates w. �

Together, Claim 1 and Claim 2 imply L = L(G). �

Rubric: 10 points:
• part (a) = 4 points. As usual, this is not the only correct grammar.
• part (b) = 6 points = 3 points for ⊆ + 3 points for ⊇, each using the standard

induction template (scaled).
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