
CS/ECE 374] Fall 2018

Y Homework 4 Z
Due Wednesday, October 10, 2018 at 10am

Groups of up to three people can submit joint solutions. Each problem should be submitted by
exactly one person, and the beginning of the homework should clearly state the Gradescope names
and email addresses of each group member. In addition, whoever submits the homework must tell
Gradescope who their other group members are.

The following unnumbered problems are not for submission or grading. No solutions for them will be
provided but you can discuss them on Piazza.

• Problem 9 in Jeff’s note on counting inversions. This is also a solved problem in Kleinberg-Tardos
book. This is the simpler version of the solved problem at the end of this home work.

• We saw a linear time selection algorithm in class which is based on splitting the array into arrays
of 5 elements each. Suppose we split the array into arrays of 7 elements each. Derive a recurrence
for the running time.

• Suppose we are given n points (x1, y1), (x2, y2), . . . , (xn, yn) in the plane. We say that a point
(x i , yi) in the input is dominated if there is another point (x j , y j) such that x j > x i and y j > yi.
Describe an O(n log n) time algorithm to find all the undominated points in the given set of n points.

• Solve some recurrences in Jeff’s notes.

1. A two-dimensional Turing machine (2D TM for short) uses an infinite two-dimensional grid of
cells as the tape. For simplicity assume that the tape cells corresponds to integers (i, j) with i, j ≥ 0;
in other words the tape corresponds to the positive quadrant of the two dimensional plane. The
machine crashes if it tries to move below the x = 0 line or to the left of the y = 0 line. The
transition function of such a machine has the form δ : Q × Γ → Q × Γ × {L, R, U , D, S} where L,
R, U , D stand for “left”, “right”, “up” and “down” respectively, and S stands for “stay put”. You
can assume that the input to the 2D TM is written on the first row and that its head is initially at
location (0, 0). Argue that a 2D TM can be simulated by an ordinary TM (1D TM); it may help you
to use a multi-tape TM for simulation. In particular address the following points.

• How does your TM store the grid cells of a 2D TM on a one dimensional tape?

• How does your TM keep track of the head position of the 2D TM?

• How does your 1D TM simulate one step of the 2D TM?

If a 2D TM takes t steps on some input how many steps (asymptotically) does your simulating 1D
TM take on the same input? Give an asymptotic estimate. Note that it is quite difficult to give a
formal proof of the simulation argument, hence we are looking for high-level arguments similar to
those we gave in lecture for various simulations.

CS/ECE 374 Homework 4 (due October 10) Fall 2018

2. Suppose you are given k sorted arrays A1, A2, . . . , Ak each of which has n numbers. Assume that
all numbers in the arrays are distinct. You would like to merge them into single sorted array A of
kn elements. Recall that you can merge two sorted arrays of sizes n1 and n2 into a sorted array in
O(n1 + n2) time.

• Use a divide and conquer strategy to merge the sorted arrays in O(nk log k) time. To prove
the correctness of the algorithm you can assume a routine to merge two sorted arrays.

• In MergeSort we split the array of size N into two arrays each of size N/2, recursively sort
them and merge the two sorted arrays. Suppose we instead split the array of size N into
k arrays of size N/k each and use the merging algorithm in the preceding step to combine
them into a sorted array. Describe the algorithm formally and analyze its running time via a
recurrence. You do not need to prove the correctness of the recursive algorithm.

3. It is common these days to hear statistics about wealth inequality in the United States. A typical
statement is that the the top 1% of earners together make more than ten times the total income of
the bottom 70% of earners. You want to verify these statements on some data sets. Suppose you
are given the income of people as an n element unsorted array A, where A[i] gives the income of
person i.

• Describe an O(n)-time algorithm that given A checks whether the top 1% of earners together
make more than ten times the bottom 70% together. Assume for simplicity that n is a multiple
of 100 and that all numbers in A are distinct. Note that sorting A will easily solve the problem
but will take Ω(n log n) time.

• More generally we may want to compute the total earnings of the top α% of earners for
various values of α. Suppose we are given A and k numbers α1 < α2 < . . . < αk each of
which is a number between 0 and 100 and we wish to compute the total earnings of the top
αi% of earners for each 1 ≤ i ≤ k. Assume for simplicity that αin is an integer for each i.
Describe an algorithm for this problem that runs in O(n log k) time. Note that sorting will
allow you to solve the problem in O(n log n) time but when k� n, O(n log k) is faster. Note
that an O(nk) time algorithm is relative easy. Hint: Use the previous part with αk/2 first and
then use divide and conquer.

You should prove the correctness of the second part of the problem. It helps to write a recursive
algorithm so that you can use induction to prove correctness.

4. Not to submit: Suppose we have a stack of n pancakes of different sizes. We want to sort the
pancakes so that the smaller pancakes are on top of the larger pancakes. The only operation we
can perform is a flip - insert a spatula under the top k pancakes, for some k between 1 and n, and
flip them all over.

(a) Describe an algorithm to sort an arbitrary stack of n pancakes and give a bound on the number
of flips that the algorithm makes. Assume that the pancake information is given to you in the

2

CS/ECE 374 Homework 4 (due October 10) Fall 2018

form of an n element array A. A[i] is a number between 1 and n and A[i] = j means that the
j’th smallest pancake is in position i from the bottom; in other words A[1] is the size of the
bottom most pancake (relative to the others) and A[n] is the size of the top pancake. Assume
you have the operation Flip(k) which will flip the top k pancakes. Note that you are only
interested in minimizing the number of flips.

(b) Suppose one side of each pancake is burned. Describe an algorithm that sorts the pancakes
with the additional condition that the burned side of each pancake is on the bottom. Again,
give a bound on the number of flips. In addition to A, assume that you have an array B
that gives information on which side of the pancakes are burned; B[i] = 0 means that the
bottom side of the pancake at the i’th position is burned and B[i] = 1 means the top side is
burned. For simplicity, assume that whenever Flip(k) is done on A, the array B is automatically
updated to reflect the information on the current pancakes in A.

5. Not to submit: Describe an algorithm to determine in O(n) time whether an arbitrary array A[1..n]
contains more than n/6 copies of any value.

Solved Problem

4. Suppose we are given two sets of n points, one set {p1, p2, . . . , pn} on the line y = 0 and the other
set {q1, q2, . . . , qn} on the line y = 1. Consider the n line segments connecting each point pi to the
corresponding point qi . Describe and analyze a divide-and-conquer algorithm to determine how
many pairs of these line segments intersect, in O(n log n) time. See the example below.

q1 q4 q7 q3q5 q2 q6

p1 p4p7 p3 p5p2p6
Seven segments with endpoints on parallel lines, with 11 intersecting pairs.

Your input consists of two arrays P[1 .. n] and Q[1 .. n] of x-coordinates; you may assume that
all 2n of these numbers are distinct. No proof of correctness is necessary, but you should justify
the running time.

Solution: We begin by sorting the array P[1 .. n] and permuting the array Q[1 .. n] to maintain
correspondence between endpoints, in O(n log n) time. Then for any indices i < j, segments i
and j intersect if and only if Q[i] > Q[j]. Thus, our goal is to compute the number of pairs of
indices i < j such that Q[i]>Q[j]. Such a pair is called an inversion.

We count the number of inversions in Q using the following extension of mergesort; as a side
effect, this algorithm also sorts Q. If n< 100, we use brute force in O(1) time. Otherwise:

3

CS/ECE 374 Homework 4 (due October 10) Fall 2018

• Recursively count inversions in (and sort) Q[1 .. bn/2c].
• Recursively count inversions in (and sort) Q[bn/2c+ 1 .. n].
• Count inversions Q[i]>Q[j] where i ≤ bn/2c and j > bn/2c as follows:

– Color the elements in the Left half Q[1 .. n/2] bLue.
– Color the elements in the Right half Q[n/2+ 1 .. n] Red.
– Merge Q[1 .. n/2] and Q[n/2+ 1 .. n], maintaining their colors.
– For each blue element Q[i], count the number of smaller red elements Q[j].

The last substep can be performed in O(n) time using a simple for-loop:

COUNTREDBLUE(A[1 .. n]):
count← 0
total← 0
for i← 1 to n

if A[i] is red
count← count+ 1

else
total← total+ count

return total

In fact, we can execute the third merge-and-count step directly by modifying the MERGE

algorithm, without any need for “colors”. Here changes to the standard MERGE algorithm are
indicated in red.

MERGEANDCOUNT(A[1 .. n], m):
i← 1; j← m+ 1; count← 0; total← 0
for k← 1 to n

if j > n
B[k]← A[i]; i← i + 1; total← total+ count

else if i > m
B[k]← A[j]; j← j + 1; count← count+ 1

else if A[i]< A[j]
B[k]← A[i]; i← i + 1; total← total+ count

else
B[k]← A[j]; j← j + 1; count← count+ 1

for k← 1 to n
A[k]← B[k]

return total

We can further optimize this algorithm by observing that count is always equal to j −m− 1.
(Proof: Initially, j = m+ 1 and count= 0, and we always increment j and count together.)

4

CS/ECE 374 Homework 4 (due October 10) Fall 2018

MERGEANDCOUNT2(A[1 .. n], m):
i← 1; j← m+ 1; total← 0
for k← 1 to n

if j > n
B[k]← A[i]; i← i + 1; total← total+ j −m − 1

else if i > m
B[k]← A[j]; j← j + 1

else if A[i]< A[j]
B[k]← A[i]; i← i + 1; total← total+ j −m − 1

else
B[k]← A[j]; j← j + 1

for k← 1 to n
A[k]← B[k]

return total

The modified MERGE algorithm still runs in O(n) time, so the running time of the resulting
modified mergesort still obeys the recurrence T (n) = 2T (n/2)+O(n). We conclude that the overall
running time is O(n log n), as required. �

Rubric: 10 points = 2 for base case + 3 for divide (split and recurse) + 3 for conquer
(merge and count) + 2 for time analysis. Max 3 points for a correct O(n2)-time algorithm.
This is neither the only way to correctly describe this algorithm nor the only correct
O(n log n)-time algorithm. No proof of correctness is required.

5

