Design Turing machines $M = (Q, \Sigma, \Gamma, \delta, \text{start}, \text{accept}, \text{reject})$ for each of the following tasks, either by listing the states Q, the tape alphabet Γ , and the transition function δ (in a table), or by drawing the corresponding labeled graph.

Each of these machines uses the input alphabet $\Sigma = \{1, \#\}$; the tape alphabet Γ can be any superset of $\{1, \#, \square, \triangleright\}$ where \square is the blank symbol and \triangleright is a special symbol marking the left end of the tape. Each machine should reject any input not in the form specified below.

- 1. On input $\mathbf{1}^n$, for any non-negative integer n, write $\mathbf{1}^n # \mathbf{1}^n$ on the tape and accept.
- 2. On input $\#^n \mathbf{1}^m$, for any non-negative integers m and n, write $\mathbf{1}^m$ on the tape and accept. In other words, delete all the #s and shift the $\mathbb{1}^s$ to the start of the tape.
- 3. On input $\#\mathbf{1}^n$, for any non-negative integer n, write $\#\mathbf{1}^{2n}$ on the tape and accept. [Hint: Modify the Turing machine from problem 1.]
- 4. On input $\mathbf{1}^n$, for any non-negative integer n, write $\mathbf{1}^{2^n}$ on the tape and accept. [Hint: Use the three previous Turing machines as subroutines.]