The following problems ask you to prove some "obvious" claims about recursively-defined string functions. In each case, we want a self-contained, step-by-step induction proof that builds on formal definitions and prior reults, *not* on intuition. In particular, your proofs must refer to the formal recursive definitions of string length and string concatenation:

$$|w| := \begin{cases} 0 & \text{if } w = \varepsilon \\ 1 + |x| & \text{if } w = ax \text{ for some symbol } a \text{ and some string } x \end{cases}$$

$$w \cdot z := \begin{cases} z & \text{if } w = \varepsilon \\ a \cdot (x \cdot z) & \text{if } w = ax \text{ for some symbol } a \text{ and some string } x \end{cases}$$

You may freely use the following results, which were proved in the lecture notes:

Lemma 1: $w \cdot \varepsilon = w$ for all strings w.

Lemma 2: $|w \cdot x| = |w| + |x|$ for all strings w and x.

Lemma 3: $(w \cdot x) \cdot y = w \cdot (x \cdot y)$ for all strings w, x, and y.

The **reversal** w^R of a string w is defined recursively as follows:

$$w^{R} := \begin{cases} \varepsilon & \text{if } w = \varepsilon \\ x^{R} \bullet a & \text{if } w = ax \text{ for some symbol } a \text{ and some string } x \end{cases}$$

For example, $STRESSED^R = DESSERTS$ and $WTF374^R = 473FTW$.

1. Prove that $|w^R| = |w|$ for every string w.

Solution (induction on w):

Let w be an arbitrary string.

Assume for any string x where |x| < |w| that $|x^R| = |x|$.

There are two cases to consider.

• If $w = \varepsilon$, then

$$|w^R| = |\varepsilon|$$
 by definition of $|\varepsilon|$ by definition of $|\varepsilon|$

• Otherwise, w = ax for some symbol a and some string x. In that case, we have

$$|w^R| = |x^R \cdot a|$$
 by definition of w^R
 $= |x^R| + |a|$ by Lemma 2
 $= |x^R| + 1$ by definition of $|\cdot|$ (twice)
 $= |x| + 1$ by the induction hypothesis $= |w|$ by definition of $|\cdot|$

In both cases, we conclude that $|w^R| = |w|$.

2. Prove that $(w \cdot z)^R = z^R \cdot w^R$ for all strings w and z.

Solution (induction on w):

Let w and z be arbitrary strings.

Assume for any string x where |x| < |w| that $(x \cdot z)^R = x^R \cdot z^R$.

There are two cases to consider:

• If $w = \varepsilon$, then

$$(w \cdot z)^R = z^R$$
 by definition of •
 $= z^R \cdot \varepsilon$ by Lemma 1
 $= z^R \cdot w^R$ by definition of e^R

• Otherwise, w = ax for some symbol a and some string x.

$$(w \cdot z)^R = (a \cdot (x \cdot z))^R$$
 by definition of \bullet
 $= (x \cdot z)^R \cdot a$ by definition of R
 $= (z^R \cdot x^R) \cdot a$ by the induction hypothesis, because $|x| < |w|$
 $= z^R \cdot (x^R \cdot a)$ by Lemma 3
 $= z^R \cdot w^R$ by definition of R

In both cases, we conclude that $(w \cdot z)^R = z^R \cdot w^R$.

But how did I know that the induction hypothesis needs to change the first string w, but not the second string z? I wrote down the inductive argument first, and then noticed that in the proof for $w \cdot z$, we needed the inductive hypothesis on $x \cdot z$. Same string z, but w changed to x. Alternatively, in light of Lemma 2, I could have inducted on the \mathbf{sum} of the string lengths with the inductive hypothesis "Assume for all strings x and y such that |x| + |y| < |w| + |z| that $(x \cdot y)^R = x^R \cdot y^R$."

3. Prove that $(w^R)^R = w$ for every string w.

Solution (induction on w):

Let w be an arbitrary string.

Assume for any string x where |x| < |w| that $(x^R)^R = x$.

There are two cases to consider.

- If $w = \varepsilon$, then $(w^R)^R = \varepsilon^R = \varepsilon$ by definition.
- Otherwise, w = ax for some symbol a and some string x.

$$(w^R)^R = (x^R \cdot a)^R$$
 by definition of x^R
 $= a^R \cdot (x^R)^R$ by problem 2
 $= a \cdot (x^R)^R$ by definition of x^R
 $= a \cdot (x^R)^R$ by definition of x^R
 $= a \cdot x$ by the induction hypothesis
 $= a \cdot x$ by assumption

In both cases, we conclude that $(w^R)^R = w$.

To think about later: Let #(a, w) denote the number of times symbol a appears in string w. For example, #(X, WTF374) = 0 and #(0,0000101010010100) = 12.

4. Give a formal recursive definition of #(a, w).

Solution:

$$\#(a,w) = \begin{cases} 0 & \text{if } w = \varepsilon \\ 1 + \#(a,x) & \text{if } w = ax \text{ for some string } x \\ \#(a,x) & \text{if } w = bx \text{ for some symbol } b \neq a \text{ and some string } x \end{cases}$$

5. Prove that $\#(a, w \cdot z) = \#(a, w) + \#(a, z)$ for all symbols a and all strings w and z.

Solution (induction on w):

Let a be an arbitrary symbol, and let w and z be arbitrary strings.

Assume for any string x such that |x| < |w| that $\#(a, x \cdot z) = \#(a, x) + \#(a, z)$.

There are three cases to consider.

• If $w = \varepsilon$, then

$$\#(a, w \cdot x) = \#(a, x)$$
 by definition of \bullet
= $\#(a, w) + \#(a, x)$ by definition of $\#$

• If w = ax for some string x, then

$$\#(a, w \cdot z) = \#(a, ax \cdot z)$$
 by definition of \bullet
 $= \#(a, a \cdot (x \cdot z))$ by definition of \bullet
 $= 1 + \#(a, x \cdot z)$ by definition of $\#$
 $= 1 + \#(a, x) + \#(a, z)$ by the induction hypothesis

 $= \#(a, ax) + \#(a, z)$ by definition of $\#$
 $= \#(a, w) + \#(a, z)$ because $w = ax$

• If w = bx for some symbol $b \neq a$ and some string x, then

$$\#(a, w \cdot z) = \#(a, b \cdot (x \cdot z))$$
 by definition of \bullet
 $= \#(a, x \cdot z)$ by definition of $\#(a, x) + \#(a, z)$ by the induction hypothesis

 $= \#(a, bx) + \#(a, z)$ by definition of $\#(a, w) + \#(a, z)$ because $w = bx$

In every case, we conclude that $\#(a, w \cdot z) = \#(a, w) + \#(a, z)$.

6. Prove that $\#(a, w^R) = \#(a, w)$ for all symbols a and all strings w.

Solution (induction on w**):** Let a be an arbitrary symbol, and let w be an arbitrary string. Assume for any string x such that |x| < |w| that $\#(a, x^R) = \#(a, x)$.

There are three cases to consider.

- If $w = \varepsilon$, then $w^R = \varepsilon = w$ by definition, so $\#(a, w^R) = \#(a, w)$.
- If w = ax for some string x, then

$$\#(a, w^R) = \#(a, x^R \cdot a)$$
 by definition of R
 $= \#(a, x^R) + \#(a, a)$ by problem 5

 $= \#(a, x^R) + 1$ by definition of $\#(a, x) + 1$ by the induction hypothesis

 $= \#(a, w)$ by definition of $\#(a, w)$

• If w = bx for some symbol $b \neq a$ and some string x, then

$$\#(a, w^R) = \#(a, x^R \cdot b)$$
 by definition of R
 $= \#(a, x^R) + \#(a, b)$ by problem 5
 $= \#(a, x^R)$ by definition of $\#$
 $= \#(a, x)$ by the induction hypothesis
 $= \#(a, w)$ by definition of $\#$

In every case, we conclude that $\#(a, w^R) = \#(a, w)$.